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ABSTRACT
Assume 0 < p < i = (%)2 and let 2 C RY(N > 4) be a smooth
bounded domain, 0 € 2. We study the semilinear elliptic problem:
—Au—prty = du+ Q(2)lul>" ~2u,u € H}(2). By investigating the
effect of the coefficient @, we establish the existence of nontrivial solu-
tions for any A > 0 and multiple positive solutions with A, u > 0 small.

1. Introduction and main results

Let © c RY(N > 4) be an open bounded domain with smooth boundary 89,

0€Q 2= 2N2. We are concerned with the following semilinear elliptic
problem,
(1.1) {——Au pE =M+ Qz Nul* ~2u in Q,

u=0 on 012,

where Q(z) is a positive bounded functionon Q, A > 0and 0 < p < i = (N 2)2,

u € H(Q) is said to be a weak solution of problem (1.1) if u satisfies
(1.2) / (Vu- Vo — u%‘% —duw — Q(@)|u|* “2wv)de =0 Vv € H}(Q).
Q

It is well known that the nontrivial solutions of problem (1.1) are equivalent
to the nonzero critical points of the energy functional

(13) Iy u(u) = % /ﬂ ([Vul2—u I%—Au?)dz / Q@) dz, u e HL(Q).
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In recent years, much attention has been paid to the existence of nontrivial
solutions of problem (1.1) (see [2, 3, 4, 8, 10, 11, 14]). Let o, denote the
spectrum of the operator —A — l—fl—z(O < p < 1) with zero Dirichlet boundary
condition. In view of [6, 9], 6,,(0 < p < f) is discrete, contained in the positive
semi-axis and each eigenvalue A\, ;(i = 1,2,...) is isolated and has finite multi-
plicity, the smallest eigenvalue A, 1 being simple and A, ; — o0 as i — oc;
moreover, each L2-normalized eigenfunction ey, corresponding to A,; € oy,
belongs to the space Hj(Q).

The functional I € C*(X,R) is said to satisfy the (P.S.). condition if any
sequence {u,} C X such that as n — o0

I(uy) = ¢, dI(u,) — 0 strongly in X*

contains a subsequence converging in X to a critical point of I. In this paper,
we will take I = I , and X = H}(9).

Set DV2(RN) = {u € L¥(RN)| |Vu| € L*(RN)}. For all u € [0,q),
fi = (¥52)2, we define the constant

o Jr (Vul? = pi)do
x

= in " 3
weDV2(RVNN\(0}  (fpn |ul?"dx)?F

From [9, 11], S, is independent of any @ C RY in the sense that if

2
Jo(IVul? — i) de

S5,(Q) := in
W(®) weHH N0} ([, |u|2* dz) P+

then 5,(Q) = S,(RN) = S,..

Let v = VB + Vi — 1,7 = VB — VE— &, S. Terracini [15] proved that for
€ >0,

(42N (7 — w)/(N - 2)) T

(1.4) Uyelx) = y
(2[2| % + || 77 )VE
satisfies
(1.5) —Au— prhy = [u[?" 2w in RV\{0},
' u—0 as |z] — oc.

From Theorem B in [5], all the positive solutions of problem (1.5) must have
the form of U, .. Moreover, U, . achieves S,.
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we easily derive that the norm ([, (|Vu|? - /J.Tz%)dl‘)% (0 < p < fz) is equivalent
to the usual norm in H} ().

In a recent paper, D. Cao and P. Han [3] considered a special case of problem
(1.1) (i.e. Q(z) = const; without loss of generality, assume Q(z) = 1). Namely,
for
(1.6) { —Au— ppdy = du+ [u[ 2y in Q,

u=0 on 05},
they proved that: Assume that 0 < p < (¥52)2 — (XE2)2) then for all
A > 0, problem (1.6) admits a nontrivial solution with critical level in the range
0, 5%).

When Q(z) # const, the analysis of Palais-Smale sequences becomes com-
plicated, which results in much difficulty. It is natural to ask whether problem
(1.1) admits one solution for any A > 0. In the present note, we not only give a
positive answer, but also prove the multiplicity of positive solutions for A, u > 0
small.

In this paper, we suppose that Q(z) is a positive bounded function on Q.
Moreover,

(H1) Q(z) =Q(0) + O(|z]*) asz —0.
(Hy) There exist points aj,as,...,ar € Q\{0} such that Q(a;) are strict local
maxima satisfying

Qa:) = Qum = max Qz) >0,
and
Q(r) = Q(a;) +o(jz — ai|?) asz —a;,1<i<k.
In order to state our main results, we need to distinguish two cases:
Case I Q(0) > Qu(32)¥=;
Case I Q(0) < Qu(5e) ™.

THEOREM 1.1: In Case I. Assume that 0 < p < i — (2F2)2(N > 5) and (H1)

holds. Then, for all A > 0 problem (1.1) admits a nontrivial solution u such
N -

that Iy ,(u) € (0,52 /NQ(0)"F>).
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THEOREM 1.2: In Case II. Let N > 5, 0 < pu < [ and (Hs) hold. Then,

for all A > 0 problem (1.1) has at least one solution v such that Iy ,(v) €
N N2

(0,55 /NQyf )-

Furthermore, by analyzing the effect of the coefficient Q(z), we obtain the
multiplicity of positive solutions of (1.1) for A, u > 0 small.

THEOREM 1.3: In Case II. Suppose N > 4 and (H;) — (Hg) hold. Then there
exist g > 0, o > 0 such that for p € (0, pg), problem (1.1) admits at least k
positive solutions with all X € (0, Ao).

We prove Theorems 1.1, 1.2 and 1.3 by critical point theory. However, the
functional I , does not satisfy the Palais-Smale ((P.S.) in short) condition due
to the lack of compactness of the embeddings: Hj(92) — L? (Q) and H}(Q) —
L*(Q,]z|72). So the standard variational argument is not applicable directly;
we need to analyze the effect of the coefficient () and the energy range where
I, satisfies the Palais-Smale condition. We prove the existence of nontrivial
solutions for any A > 0 and multiple positive solutions of problem (1.1) with
A > 0,u > 0 small by the linking theorem and mountain pass lemma (see
(13, 16]).

Throughout this paper, we denote the norm of Hj () by | u| =(f, |Vu|2dz)?,
the norm of L*(Q)(1 < I < 00) by | u| 11y = (J;, lul'dz)? and positive constants
(possibly different) by C,Cy,Cy,. ...

2. Proof of Theorem 1.1

In this section, we first introduce some preliminary lemmas.

LEMMA 2.1: Let 0 < pu < ji. Then for every A > 0, I, , satisfies the (P.S.).
condition with ¢ < ¢*, where

R
¢t = min{ £ N-2 ON-z }
NQ(O)T NQ@,7

Proof: Assume that {u,} C H}(f) satisfies, as n — oo,
Iy u(un) — c < c*,dly ,(un) — 0 strongly in HYQ).

By the Hardy inequality, we easily get | un| < C. Therefore, up to a sub-
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sequence, we may assume that

un, — u weakly in Hy(Q);

u, — u weakly in L*(Q, |z|~2dz);
un — u weakly in L*" (Q);

U, — u strongly in L*(Q);

Uy, — U a.e. on €.

It is easy to verify that u € H3(Q) is a weak solution of problem (1.1).
Hence, by the concentration compactness principle [12], there exists a sub-
sequence, still denoted by {u,}, at most countable set .7, a set of different points

{z;}ies, and {15} se 7010} {Vi}iequioy C [0,00) such that

Vunl? = dfi > [Vul® + 3 700, + Hodo,

JjeJ
[un[*” = d7 = [u® + D 5384, + Dodo,
jeJ
|2, ]2 [ul2
gy = S
lx|2 Y |$|2 +70 0,

SOZ%SZZ; for je J,
-2~ .
Suv0® < o — (Yo

We claim that J is finite and that for any j € J, either v; = 0 or

- N N2
Qz;)V; 2 S5 /@y -
In fact, let € > 0 be small enough such that 0 ¢ B(z;)(j € J). Let ¢’ be a

smooth cut off function centered at x; satisfying

0<# <10 ={g Hr D SE wdivels

ol

QObserve that
|un|*¢’

||

<dI>\,u(un)aun¢j> :/ |vun|2¢idw+/ unvunvqb]dm —H dz
(2.1) Q Q Q

—A/Q|un|2¢fdx-/QQ(z)|un|2*¢idm,

(2.2) lim / |Vun|2¢jdx=/¢7dﬁ2/ |Vul|?¢ dx + 17,
T Ja Q Q
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3) Jim [ @@l ¢z = [ Quiwdr = [ Q@ Pdz-+ Q)5

lim lim
e—0n—oo

/unVunVde

Q

s ( [oute) (oot
< Clim ( |u]2]V¢\7']2tcia:)i

(2.4) =0 /n

< Clim (( |v¢7'|Ndm>
=0 Be(x;)
( |u|2‘dx)

B

.\
(7))
Be(xj)

< Clim

€e—0

Be(z;)

and

5 s
(2.5) lim lim [ e ¢
e—>0n—oo 0 |£L'|2

dz =0, lim lim [un|*¢dz = 0.
€e—Un—00 9]
Inserting (2.2)—(2.5) into (2.1), we deduce

(2.6) 0 = lim hrgo(dl,\ 2 () und®) > 1 — Q(z;);.

e—=0n—

Since SOVJ% < MJ for j € J, together with (2.6), we infer that 7; = 0 or

Q(z;)v; > SO /Q A » which implies that J is finite.

Now we consider the possibility of concentration at the origin. Let € > 0 be
small enough such that z; ¢ B.(0)(j € J). Let ¢ be a smooth cut off function
centered at 0 satisfying

0<¢<1 ¢(m)={1 %f|w|§§, and |V¢l§é.
-r=7 0 if |z| > ¢, €

Then we have

n—oQ

lim |Vun| ¢d:r—/¢dﬁ2/ |Vaul?pdz + o,

Q
lim Q(m)lun[2 bz = / Q(z)¢ds = / Q(@)|ul* ddz + Q(0)7%,
n—oo Q

JL‘%O/Q[?TZ'; x—nle/¢d~ /l ul’s dz + Fo,
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lim lim Un Vi, Védr = 0,

e—0n—oo Jo

lim lim / [un)?¢dz = 0.
Q

e—0n—oo

Hence, we conclude that

(2.7) 0 =lim lim (d) ,(un),ung) > po — Yo — Q(0)2%.

e—0n—00
Since S“I;E)'% < o — Yo, together with (2.7), we get
S, < QO)%,
which implies that o = 0 or iy > (@S-(fé—))%
From the above arguments, we conclude

Cc= I)\,u(un) - %<dl)\,u(un)’un> + 0(1)

=%me%ﬁw+M>
- % (/Q Q@)ul* do + Y Q(z;)7; + Q(O)VNO)-

JjET
If there is a j € J U {0} such that J; # 0, then we infer that

Sz

N
i

CZmin{ S“ N_2 SN-2}ZC*7

NQO NgF

which contradicts the assumption on c.

365

Hence, up to a subsequence, we derive that u, — wu strongly in HJ(f).

Denote by B,.(y) the ball of radius r centered at the point y € §; we have

B: (y) C Q for m large enough. For 0 < u < fi, let

H™ =span{ey1,€u2,---,€uk}s HT = (H‘)i.

Fix k, define the approximating eigenfunctions e’; = {mepi(i = 1,2,...) and

the space
H = span{e:ﬁl,el’zz, s epkh
where
0 if z € B (0),
En(@) = { mlz| -1 ifz € B3 (0)\B.(0),
1 ifer\B%(O).

We have the following error estimates, which can be found in [3]:
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LEMMA 2.2: Let 0 < u < fi. Then
(i) lep; —euil — 0 asm -— oo;

(ii) ma.X{ueH;J “| L2(Q)=1} I u‘ 2 S Au,k + Cm_2 ﬁ—“,

For any m > 0,€ > 0, we define

2 N-2

Upela) — GeNEW/IN=2) T ¢ 5 ¢ B, (0),
28)  ul(z)=¢ (2(2) VR 4(L) VE)VE +0

0 if 2 € 2\B1 (0).

The following estimates hold (see [9]): For any 0 < p < f,

m\2
(2.9) / (|Vu;"|2 _ b 3 )dm < SF + CreN2m2VEE,
Q ||

(2.10) / [u™? dz > S,? — CoeNmF VAR,

Q

Set

Ce = helﬁf,m e D p(h(u)),

where
Tem = {h € C(Qem, Ho (V)| h(u) = u, Yt € 0Qe,m}

and

Qem = (Br(O)NH,) @ {rul"| 0 <r < R}
Then we have the following:
LEMMA 2.3: Let the assumption (Hy) hold and p € [0, i — (232)%). Then for

N N_2
any A >0,c. < S7 /NQO) = .

Proof: Without loss of generality, we may assume that there exists an integer
k such that Ayx < A < Apktr. Let maxyeq, . Inp(u) = Iy u(wp + 7 ud),
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where wy* € H,. By (ii) of Lemma 2.2, we get
(2.11)

Lo () )
Do) =5 [ (19 =l =M )do - 5 [ Qe

S___)‘“’k2_ A /( "‘)Zd:r + Cm~2VE- / ™2dy — 21111111 Q(z)
o)

o
/Q lwy'|* dz

—2/F=n 1 «
<Om=2VE~E| i i?*(n) o mﬁmQ(z)] wi| 2o

< max(Cm~2VE=H{2 2lm1n Qx)t*)

>0
<Cm~NVE-R,

On the other hand, as in [9], choose € = m~N=3VE"E_ Thus as m — 00,
(2.9) and (2.10) become respectively

(2.12) / (|Vu2"|2 - (7 |2) )da: < 52 + Cym~NVE—H
Q

* N 2 —
(2.13) / WP dz > SF — Cym o3 VAR,
Q

From (2.13) and the assumption of (H;), we easily deduce that for m large
enough

(2.14) / Q) dz > Q(O)SE — Cym= RV,
Q
Furthermore,
(2.15) / ™ Pdz > Cym—(N+2),
Q

Observe that id € T, and [suppw)]® N suppu®| = 0. From (2.11), (2.12),
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(2.14) and (2.15), we conclude that

Ce < Ienan Iy u(u)

4 €,m

=1y u(wp" + 1)

ZIA,u(w;T) + Ik,ﬂ(t:?e <

. $m )2 m\2
<om-mvi ¢ i “;) / (IVuZ”I2 - u—~(7;!3 - A(ul")"’>dfv
Q

(tme)2* mi2*

S [ Qi do

(2.16) . (im 2
== N =

<Om~NVETE 4 ——“’e) (82 + Cym™NVETH — \Cym~(N+2))

A )2 e (q (0)52 Cgm_TV%‘/‘_‘T“)

<Cm”N‘/ b= (52 + Cym~ NVE=E _ 2\Cym~(N+2))

S + Cym= VIR — )\Cym~(N+2) | ¥52
e e v =
Q(0)S7 — Cym™ V=2ViTk

where we use the following fact:

g (t;A— t_;_B) = %A(%>%ﬁ, A,B>0.

Note that 0 < p < i — (2#2)2 and then N +2 < NI —p < Ni;%\/ﬁ—p.
Hence, for m large enough, we deduce from (2.16) that

% 3
< i,—\,—_—; + Cm NVE-#m _ C5m_(N+2) < _—Sl*_NT
NQ(0)™= NQ(0)z

Proof of Theorem 1.1: From [9], for m, R large enough I, , satisfies all the
assumptions of the linking theorem [13] except for the (P.S.). condition, i.e.,
(i) There exist ag, po > 0 such that

Lou(w)>ag Yu€ 0B, (0)nHT.
(ii) There exists Ry > po such that
I ulogem S w(m) withw(m) — 0asm — oo.

Moreover, 8B,,(0) N H* and 8Q., link (cf. [13]). Then we obtain a Palais-
Smale sequence {u,} for I , at level c.; moreover,

ce > infueap,, (@na+ Inu(v) 2 a0 >0
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(see Theorem 2.12 in [16]). By Lemma 2.1 and Lemma 2.3, we infer that there
is a subsequence of {u,}, still denoted by {u,}, and a function u € H}(f), such
that

u, — u strongly in H}(Q),

and then c. is a critical value of Iy , and u is a nontrivial solution of problem
(L.1). |

3. Proof of Theorem 1.2

In this section, we consider Case II: Q(0) < Q M(%’é)N_{_? Observe that S, < Sp;
we easily infer that a; # 0 (1 < i < k), where a; €  satisfies Q(a;) = Qup =
maxg Q(z). So Bz (a;) C €2 for m large enough. Set

HO_ = span{eo,lan,Za .. "eO,k}aH+ = (H()_)J_a

where eg; (1 =1,2,...) are the eigenfunctions e, ; for 4 = 0 in section 1.
Fix k; define the space

- J— m m m
Hy,, = span{eq';,€5'a: - - €0k )

where ef'; = (meo; (7 =1,2,...),

0 ifze B% (ai),
(m(z) = mlz—a;| -1 ifze Bz (a,—)\B#(ai),
1 ifre Q\Bl(&z)

For any m > 0,¢ > 0, we define

N-=-2
Us.elz — as) — (ENWN=2)) T ¢ B1(as),

Uea, () = E+(EHVE
’ 0 if z € Q\Bi (a;).
The following estimates hold:
N
3.1) / Vo™, [2de < SF + CeN?m 2,
Q
. N
(3.2) / W ¥ dz > SZ — CeVNmM.
Q

In fact, choosing ¢ = 0 in (2.9) and (2.10) respectively, we get (3.1) and (3.2)
immediately.

Set

P = inf Iiu(h
=, mex Liu(h(u)),
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where
I;,, = {heCQf ., Hy(R)| h(u) = u,Yu € 8Qr .}

and
em“‘(BR(az)nHom)®{7"U |O<T<R}

Then we have the following:

LEMMA 3.1: Assume that N > 5, u > 0 and the assumption of (Hy) holds.
N N-2
Then for any A > 0, ¢ < 87 /NQ,/

Proof:  As in the proof of Lemma 2.3, we suppose Agx < A < Ag k41 for some
integer k. Let maxyeq: , Inu(u) = Dy (Wi + 1500, ), where wi' € Hy .. By
(i1) of Lernma 2.2 (the case: u = 0), we derive

(3.3)

AV
Bt =3 [ (0ug? - S8 -2 - 5 [ Qg as

S—M’kg_ : / (wf)2dz + Cm~ (V-2 / (e — o min Q(z)
Q Q

2*
/ ' ? da
0

— —_ 1 3 *
<Cm N z)l w6n| iz* o~ 5: m_s%nQ(x)i wz)nI %,2' ()

1 .
< —(N-2)2 _ 1 . 2
< I?Zagc(Cm t o mﬁm Q(z)t*)

N(N=2)

<Cm~" 2

On the other hand, choosing z = 0 in (2.12), (2.13), and € = m~(N+2)/2 we
get as m — 00

3.4 Vo 2de < SF +Cm~
€, 0
Q
3.5 vm.z‘deS% —Cm‘y;.
€,a; 0
o

From the assumption of (H;), and after a direct calculation, we get

2

N ~2

(3.6) /Q €m|2 dr > Q(a;)Sg —Cm™ 7.

In addition,

(37) / ™, [2dz > Om=(V+2).
Q
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Observe that id € T

em and |suppwg® N suppv, | = 0. We deduce from
(3.3)~(3.7) that

¢ <, mex D)

=I)u(wg' +15Veq,)
:IAvN(wO )+ IA»P‘(tOE :nai)

<om-202 | (B )2/(|V m 2 =A@, de

€,a;

( 6?6)2* m 12*
- 9% Q(x)lve,ai| dz
Q

2
- T2 (t%) (So% b Oom-ER o ~(N+2))

N 2
5 N

(Qa:)Sg —Cm™7)

+ %(S(? +Om™ T F2 - ACm-W+)

N(N=2)

) (sﬁ +Om~ T2 \Cmm(N+2) ) N2
Q(a))S7 —Cm~%

Note that for N > 5, N +2 < N(N —2)/2 < N?/2. Hence, for m large
enough, we derive that

N N
e < **ggi‘m +Om~ T om N ¢ sz_r i
NQ(ai) T NQ(ai) =

Proof of Theorem 1.2: From [9], for m, R large enough I , satisfies all the
assumptions of the linking theorem [13]. Namely,
(i) There exist a, p > 0 such that

Iyu(v) > a YvedBy(a;)N HJ.
(ii) There exists R > p such that
Ixulogr,, < p(m) with p(m) — 0 as m — oo.

Moreover, dB,(a;) N Hf and 8Q:,, link (cf. [13]). Then we obtain a
Palais-Smale sequence {v,} for I , at level ¢}; moreover,

.~
> mfveaBp(a,»)nHJ Ly,(v)2a>0
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(see Theorem 2.12 in [16]). By Lemma 2.1 and Lemma 3.1, up to a
subsequence, we may assume that

vp, — v strongly in Hy (),

and then ¢} is a critical value of I , and v is a solution of problem (1.1).
1

4. Proof of Theorem 1.3

In this section, we first give some preliminary notation and useful lemmas.
Choosing r¢ > 0 small enough such that 0 € B, (a;), Br,(ai) C  and
Bro{a;)N Bry(aj)=0forisj,i,j=1,2,...,k.
Define

_ Jo¥i(@)|Vul*de

gl('U,) = W, ’(/)z(.’E) = min{l, IIL' et ai|}, 1<4 < k.

Then we have the following separation result.
LEMMA 4.1: If g;(u) < 19/3 and g;(u) < ro/3 for u € H}(Q)\{0}, theni=j.

Proof: For any u € H}(Q)\{0} satisfying g;(u) < ro/3 (1 < i < k), we have

T—O/ |Vu[2dx2/1/)i(z)|\7u|2dz2/ wi(a:)IVu|2dx
3 Ja Q 2\ Bry(as)

2Ty / |VU|2d.’E,
Q\ By, (a;)

which implies that
(4.1) / |Vul2dz > 3/ |Vul?dz, 1<i<k.
Q Q\Bro(ai)

Hence, from (4.1), we obtain

2/ |Vul?dz > 3(/ |Vu|2dm+/ qu|2dx>
0 Q\Br,(a:) Q\Byy(a;)
> 3/ |Vul’dz if i # j,
Q
which is a contradiction. 1

Set
N ) = {u € Hy(Q\{0}| (dI) u(uw),u) = 0},

Ni(h 1) = {u € N(A, )| gi(u) <ro/3},
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and
Oi(\ 1) = {u € N(\, 1) gi(u) = ro/3}.
Define
(A, )= inf T d g\ p):= inf I ,
ci(A, 1) et au(u) and (A, p) el (W)
i=1,2... k.

Then we have

N N-2
LEMMA 4.2: ¢;(Ap) < SOIZY INQ,/

Proof: Let p > 0 be small enough such that 0 ¢ B,(a;) for i =1,2,...,k, and
B,(a;) C Q. Set w?(z) = p(x)W2(z), where

: (N(N —2)e)" 7" {1 if |z —a;| <2
Wi(z) = and 0<p<1, x) = . 2’
= (e + o — aif?) 7 7 P =10 iflo—alzp

Then we have t%w% € N(A, i), where

wei]? ; _
<fﬂ<|Vw3i|2 — plysd - AlwzlP)dw) N2

£ = —
Jo Q(@)wet|*" dz

€

Furthermore,
a;i,, 0 f wi |V'wal( )|2d.’l7
gilterwe’) = an |Vwe (z)]2dz
B Jozsi $ilai + )|V (p(a: + ey) WP (y)) Pdy
- Ja=a; [V (plai + ey) WP (y)) Pdy

— t;(a;) =0 as € — 0.

Hence, there exists ¢y > 0 such that for any € € (0, €), g;(t%w?) < ro/3, which
implies t%w% € N;(\, p), 1 < < k. Therefore, we get

ci(Ap) S Dp(tewet) = maxI)\,#(twgi)

(42) (fn('thll‘2 - le;| I — Mwg|? )dx)%
(Jo Q@) w2 dz) ¥ '
From [2], we know that the following estimates hold:
(4.3) / Vwi2dz = / [VW?2dz + O(e"7),
Q RN
(44) / i [* dz = / W2 dz + O(e%),
Q RN
N=2 ]
(4.5) / lwaiIde =L(e) = {CE + O(e—z‘) if N > 5,
Q Ce|logel + O(e) if N =4,
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To proceed further, we need to estimate the two terms in (4.2):

w2

P dr and /Q Q(x)|w*|? dz.

|we 12 dz

N-2
dz > Ce = /
|z|? Bp (as) |z|2( + |z — a;f2)N 2

N2 dy
>Ce 2 /
Bg (0) ly + as[?(e + [y2)V -2

Z Ce%

(4.6) dy

/B%(O) (Iyl? + las?) (e + [y$)N 2

£ N-1
N-2 2 T
>Ce T S ——
= /0 (e+r)N=2

> Ce.

It follows from the assumption of (Hj) that for any n > 0, there exists p > 0
small enough such that for z € B,(a;), |Q(z) — Q(a;)| < n|z — a;|*. So we have

/Q (Q(=) — Q(a:)) ¥ de| <

N |z — a,'|2
< Cneg/ — dx
B(as) (€+ [T — a;|2)N

P LN+1
SCTK%/ A
o (

e+r2)NV
e tN+1
= Cne/ A+
< Chge,

which implies

(4.7) /Q (Q(z) - Qag))lw™[* dz = ofe).
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Thus, from (4.7), we derive
[ Q@) dz =Qu / Weldo - Qu [ e o
Q RN Q
+Qu / (o = D)W dz
(48) + /Q (Qe) - Qai)u [ do
—Qu /R WO dz 4+ 0(e¥) +ofd

~Qu [ | Wi da+ ofe)

Inserting (4.3), (4.5), (4.6) and (4.8) into (4.2), we deduce that for € > 0 small
enough

1 f N IVWIOPdZ‘ + O(eN_z——z) —Ce — L(E) x
Ci )\, < = R 2
) N( (Q@um [pn IWDF dz + 0(€)) ¥ )
Sy

N
2z
< 2L (1+ 0T ) = Ce~ CL(e) ¥
NQ, 7
5
< SON [
NQ,Z

LEMMA 4.3: There exist Ay, g > 0 such that
N

S 2
(A u) > —Oﬂ;; for all X € (0, Ao) and p € (0, po)-
NQ\/
Proof: Suppose to the contrary that we could find two positive sequences
=2

N
An — 0 and g, — 0 as n — 00, such that (A, pn) — ¢ < 57 /NQM
Consequently, there exists u, € O;(An, ptr) such that as n — oo,

I/\n)u'n (un) —C

and

as9) (vl - '“’;' Anlunf2)dz = / Q@) un ? da.

It then follows easily that | u,| < C, and in particular,

: 'un,2 . bn 24
lim i, dr < lim == [ |Vuy|dr =0 and
oo [ Ja

n—ao Q '1"2

lim A, / [tn|2dx = 0.
n—moo Q
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From (4.9), and by the Hélder and Sobolev inequalities, we can fix mgp > 0 such
that

/ |V, |2dz > mg and /Q(x)lun|2‘dw > my.
Q Q

Thus, up to a subsequence, we infer that

lim |Vun| dz = lim / Q(z)|un|* dz = a > 0.
—*Ja

n—oo

Furthermore, we deduce

2
* ;1: T
a< lim upl? dz < S, 2 lim (/ Vu 2dm>
R A - VA
< QuS; To%
Thus we get
N N2
(4.11) 0> S5 /Quf

On the other hand, we have as n —

(4.12)
1 1 2 |un12 / 2*
Ne= §/Q(|Vun| hn 2P — Anlun|?)dz Q(z)|un|* dz+0(1)
- I’\n)ﬂ'n (u") + 0(1)
o
<%
2
M

Hence, from (4.11) and (4.12), we infer a = SO /QM and then from (4.10)

. N N2
lim / Qumlunl* dz = S /Q,/
n—aueo Q
Therefore,
(4.13) lim / (Qnr — Q(@))|unl? dz = 0.
n—>od Q

Set wp, = un/|tn|p2~ (q); then [wn|p2+(q) =1, and

Jo |Vun|?de
Tl
1§ 2* (€1)

n—od —_0C

lim [ |Vwg|*dz = lim
Q k(3
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That is, {w,} is a minimizing sequence for the problem
Sp = inf { / VulPde | u e Hg(ﬂ)\{o},/ 2 dg — 1}.
Q Q

We now use a result of P. L. Lions [12] to conclude that there exists an zo € Q
and a subsequence, still denoted by {wy,}, such that

|Vw,|?> = dii = Syb,, weakly in the sense of measure,

and
|wn | — dU = §,, weakly in the sense of measure.

Observe that g;(wn) = gi(un) = r0/3; we conclude that

. 2
M g = tim SOV

n—s00 n—s0o0 fQ |an|2dm

which implies that zo & {a;{ i =1,2,...,k}. Therefore, from (4.13), we deduce

Qu = Jim [ Quiunfdo = tim_ [ Q@)lun ds = Qa),

n—>00 Q
which is impossible, because that @ is not a constant function. 1
LEMMA 4.4: For any u € N;(\, u)(1 < i < k), there exists p, > 0 and a

differentiable function f: B, (0) C H3(Q) — R such that f(0) = 1, and for
any w € B, (0), we have f(w)(u — w) € N;(A, ). Moreover, for all v € H} (),

2 Jo(Vu- Vv — ppty — )\uv)dm -2 fQ (2)|u|* ~2uvda
Jo(IVul? = uftly = Nuf2)dz — (22 = 1) [, Q@)luf>" dz
Proof: Let u € N;(\, i) and G: RT x H}(£2) — R be the function defined by

(f'(0),v) =

|u - w|?

G(t,w)zt/(W(u )t -ns -Mu—w;?)dx—t?*—l/QQ(x)|u—w|2*dx.

Then G(1,0) = 0 and

Gu(1,0) = [ (19uf - H Yo = 2 =) [ Q@ ds

—(@2-2) /ﬂ Qa)lul dz
£0.
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Hence, by the implicit function theorem, we infer that there exists p, > 0
small enough and a differentiable function f: B, (0) C H}(£2) — R such that
f(0) =1 and G(f(w),w) = 0 for all w € B, (0). It is easy to verify from
G(f(w), w) = 0 that f(w)(u — w) € N;y(\, p) and

((0),0) = _%

2 Jo(Vu - Vo — Kiatr — Aww)dz — 27 fo Q@) |u* ~2uvdz
 Jo(Vul2 - pff — Mu2)dz - (27 - 1) [, Q(@)|uf? dz

Proof of Theorem 1.3: From Lemmas 4.2 and 4.3, we conclude that

(4.14) (A p) <A p) 1<i<k) forall A€ (0,X) and u € (0, o).
It then follows that
ci(A, u) = inf{Ix u(w)| v € Wi(A, 1) U Os(A, 1)) }-

Let {u}} C (Mi(A\, 1) U O;(\, 1)) be a minimizing sequence for ¢;(\,u). By
replacing u¢, with |u?|, if necessary, we may assume that u?, > 0. By Ekeland’s
variational principle [7], there exists a subsequence, still denoted by {u }, such
that

1
Iy u(uy) <ci(Ap)+ o

and
Inu() 2 D) = | w =] for all w € (NGO, 1) U OO\ k).

From (4.14), we may assume that u, € N;(\, p) for sufficiently large n. Set
v, = pv with | v| =1 and 0 < p < py;; then v, € B, , (0), and from Lemma
44, wp = fui (v,)(ud, — v,) € Ni(\ p), where pu;,fu; are from Lemma 4.4.
Observe that fy: (v,) — fui (1) =1 as p — 0, and by a Taylor expansion, we
obtain

1 . .
;| Wwp — Up| 2D u(uy) — Inu(wp)

:<dIA,M(“21)’“:L —w,) + o u’f‘l —wpl )
=pfus, (0){(AIxu(uh),0) + (1 = fus (p)){dDnu(us,), u,)
+o(| uy, —wp| )

=t (V)L (ul), ) + o], — w,] ).
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Hence, we conclude that

| wo —up| ( + (D))

[{dI p(un), )| <

< Junlfus (pv) = fus (0)) = pofus (o)l (5 + o(1)])
- plfui, (0v)]
tu';tl lfu;(pv)_fu;(o)l +P| 1)| 'fu;(pv)l l 0
: olFus (o0 (5 1o

<00+ £, OD (5 +lon)]).

Therefore, we deduce that dI ,(u%) — 0 as n — o0o. Hence {u%} is a Palais-
N N2

Smale sequence for I, at the level ¢;(A, u). Since ¢;(\, p) < SZ /INQ,7 =c¢*

in Case II, from Lemma 2.1, we infer that there is a subsequence of {u!,}, still

denoted by {u%}, and a function ut € H}(Q), such that

ul, —u' (1<i<k) strongly in Hj(),

n

and then u' > 0(1 < i < k). By the strongly maximum principle, we obtain
ut >0 (1 <i<k)in Q. Since g;(u?) € Bry(a,), and Brg, ) are disjoint for
i =1,2,...,k, we conclude from Lemma 4.1 that v*(1 < ¢ < k) are distinct
positive solutions of (1.1). |
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