MULTIPLE SOLUTIONS TO SINGULAR CRITICAL ELLIPTIC EQUATIONS

BY

PIGONG HAN

Institute of Applied Mathematics, Academy of Mathematics and Systems Science Chinese Academy of Sciences, Beijing 100080, P. R. of China e-mail: pghan@amss.ae.cn

ABSTRACT

Assume $0 \leq \mu < \bar{\mu} = (\frac{N-2}{2})^2$ and let $\Omega \subset R^N(N \geq 4)$ be a smooth bounded domain, $0 \in \Omega$. We study the semilinear elliptic problem: $-\Delta u - \mu \frac{u}{|x|^2} = \lambda u + Q(x)|u|^{2^*-2}u, u \in H_0^1(\Omega)$. By investigating the effect of the coefficient Q , we establish the existence of nontrivial solutions for any $\lambda > 0$ and multiple positive solutions with $\lambda, \mu > 0$ small.

1. Introduction and main results

Let $\Omega \subset R^N(N \ge 4)$ be an open bounded domain with smooth boundary $\partial \Omega$, $0 \in \Omega$, $2^* = \frac{2N}{N-2}$. We are concerned with the following semilinear elliptic problem,

(1.1)
$$
\begin{cases} -\Delta u - \mu \frac{u}{|x|^2} = \lambda u + Q(x)|u|^{2^*-2}u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}
$$

where $Q(x)$ is a positive bounded function on $\overline{\Omega}$, $\lambda > 0$ and $0 \leq \mu < \overline{\mu} = (\frac{N-2}{2})^2$. $u \in H_0^1(\Omega)$ is said to be a weak solution of problem (1.1) if u satisfies

$$
(1.2) \qquad \int_{\Omega} (\nabla u \cdot \nabla v - \mu \frac{uv}{|x|^2} - \lambda uv - Q(x)|u|^{2^*-2}uv) dx = 0 \quad \forall v \in H_0^1(\Omega).
$$

It is well known that the nontrivial solutions of problem (1.1) are equivalent to the nonzero critical points of the energy functional

$$
(1.3)\ \ I_{\lambda,\mu}(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 - \mu \frac{u^2}{|x|^2} - \lambda u^2) dx - \frac{1}{2^*} \int_{\Omega} Q(x) |u|^{2^*} dx, \quad u \in H_0^1(\Omega).
$$

Received March 8, 2005

In recent years, much attention has been paid to the existence of nontrivial solutions of problem (1.1) (see [2, 3, 4, 8, 10, 11, 14]). Let σ_μ denote the spectrum of the operator $-\Delta - \frac{\mu}{|x|^2}$ $(0 \le \mu < \bar{\mu})$ with zero Dirichlet boundary condition. In view of [6, 9], $\sigma_\mu(0 \le \mu \le \bar{\mu})$ is discrete, contained in the positive semi-axis and each eigenvalue $\lambda_{\mu,i}(i = 1, 2, \ldots)$ is isolated and has finite multiplicity, the smallest eigenvalue $\lambda_{\mu,1}$ being simple and $\lambda_{\mu,i} \longrightarrow \infty$ as $i \longrightarrow \infty$; moreover, each L^2 -normalized eigenfunction $e_{\mu,i}$ corresponding to $\lambda_{\mu,i} \in \sigma_\mu$, belongs to the space $H_0^1(\Omega)$.

The functional $I \in C^1(X,R)$ is said to satisfy the $(P.S.)_c$ condition if any sequence $\{u_n\} \subset X$ such that as $n \longrightarrow \infty$

$$
I(u_n) \to c
$$
, $dI(u_n) \to 0$ strongly in X^*

contains a subsequence converging in X to a critical point of I . In this paper, we will take $I = I_{\lambda,\mu}$ and $X = H_0^1 (\Omega)$.

 $\mathrm{Set} \,\, D^{1,2}(R^N) \,\, = \,\, \{ u \,\, \in \,\, L^{2^*}(R^N) | \,\, \left| \nabla u \right| \,\, \in \,\, L^2(R^N) \}. \,\,\,\, \mathrm{For \,\, all} \,\,\, \mu \,\, \in \,\, [0,\bar{\mu}),$ $\bar{\mu} = (\frac{N-2}{2})^2$, we define the constant

$$
S_{\mu} := \inf_{u \in D^{1,2}(R^N) \backslash \{0\}} \frac{\int_{R^N} (|\nabla u|^2 - \mu \frac{u^2}{|x|^2}) dx}{(\int_{R^N} |u|^{2^*} dx)^{\frac{2}{2^*}}}.
$$

From [9, 11], S_{μ} is independent of any $\Omega \subset R^N$ in the sense that if

$$
S_{\mu}(\Omega):=\inf_{u\in H^1_0(\Omega)\backslash\{0\}}\frac{\int_{\Omega}(|\nabla u|^2-\mu\frac{u^2}{|x|^2})dx}{(\int_{\Omega}|u|^{2^*}dx)^{\frac{2}{2^*}}},
$$

then $S_u(\Omega) = S_u(R^N) = S_u$.

Let $\gamma = \sqrt{\bar{\mu}} + \sqrt{\bar{\mu} - \mu}, \gamma' = \sqrt{\bar{\mu}} - \sqrt{\bar{\mu} - \mu}$, S. Terracini [15] proved that for $\epsilon>0$,

(1.4)
$$
U_{\mu,\epsilon}(x) = \frac{(4\epsilon^2 N(\bar{\mu} - \mu)/(N-2))^{\frac{N-2}{4}}}{(\epsilon^2 |x|^{\frac{\gamma'}{\sqrt{\mu}}} + |x|^{\frac{\gamma}{\sqrt{\mu}}})^{\sqrt{\mu}}}
$$

satisfies

(1.5)
$$
\begin{cases} -\Delta u - \mu \frac{u}{|x|^2} = |u|^{2^*-2}u & \text{in } R^N \setminus \{0\}, \\ u \longrightarrow 0 & \text{as } |x| \longrightarrow \infty. \end{cases}
$$

From Theorem B in [5], all the positive solutions of problem (1.5) must have the form of $U_{\mu,\epsilon}$. Moreover, $U_{\mu,\epsilon}$ achieves S_{μ} .

By the Hardy inequality (see [1])

$$
\int_{\Omega} \frac{u^2}{|x|^2} dx \leq \frac{1}{\bar{\mu}} \int_{\Omega} |\nabla u|^2 dx \quad \forall u \in H_0^1(\Omega),
$$

we easily derive that the norm $(\int_{\Omega}(|\nabla u|^2 - \mu \frac{u^2}{|x|^2})dx)^{\frac{1}{2}}$ $(0 < \mu < \bar{\mu})$ is equivalent to the usual norm in $H_0^1(\Omega)$.

In a recent paper, D. Cao and P. Han [3] considered a special case of problem (1.1) (i.e. $Q(x) \equiv const$; without loss of generality, assume $Q(x) \equiv 1$). Namely, for

(1.6)
$$
\begin{cases} -\Delta u - \mu \frac{u}{|x|^2} = \lambda u + |u|^{2^*-2}u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}
$$

they proved that: *Assume that* $0 \leq \mu < (\frac{N-2}{2})^2 - (\frac{N+2}{N})^2$, *then for all* $\lambda > 0$, problem (1.6) admits a nontrivial solution with critical level in the range $(0, \frac{1}{N} S_u^{\frac{N}{2}}).$

When $Q(x) \neq const$, the analysis of Palais-Smale sequences becomes complicated, which results in much difficulty. It is natural to ask whether problem (1.1) admits one solution for any $\lambda > 0$. In the present note, we not only give a positive answer, but also prove the multiplicity of positive solutions for $\lambda, \mu > 0$ small.

In this paper, we suppose that $Q(x)$ is a positive bounded function on $\overline{\Omega}$. Moreover,

- (H_1) $Q(x) = Q(0) + O(|x|^2)$ as $x \to 0$.
- (H_2) There exist points $a_1, a_2, \ldots, a_k \in \Omega \setminus \{0\}$ such that $Q(a_i)$ are strict local maxima satisfying

$$
Q(a_i) = Q_M = \max_{\overline{\Omega}} Q(x) > 0,
$$

and

$$
Q(x) = Q(a_i) + o(|x - a_i|^2)
$$
 as $x \to a_i, 1 \le i \le k$.

In order to state our main results, we need to distinguish two cases:

CASE I: $Q(0) \ge Q_M(\frac{S_\mu}{S_0})^{\frac{N}{N-2}};$ CASE II: $Q(0) < Q_M(\frac{S_\mu}{S_\mu})^{\frac{N}{N-2}}$.

THEOREM 1.1: *In Case I. Assume that* $0 \le \mu < \bar{\mu} - (\frac{N+2}{N})^2 (N \ge 5)$ and (H_1) *holds. Then, for all* $\lambda > 0$ problem (1.1) admits a nontrivial solution u such *that* $I_{\lambda,\mu}(u) \in (0, S_{\mu}^{\frac{N}{2}}/NQ(0)^{\frac{N-2}{2}}).$

THEOREM 1.2: In *Case II. Let* $N \geq 5$, $0 \leq \mu < \bar{\mu}$ and (H_2) hold. Then, *for all* $\lambda > 0$ problem (1.1) has at least one solution v such that $I_{\lambda,\mu}(v) \in$ $(0, S_0^{\frac{N}{2}}/NQ_M^{\frac{N-2}{2}}).$

Furthermore, by analyzing the effect of the coefficient $Q(x)$, we obtain the multiplicity of positive solutions of (1.1) for $\lambda, \mu > 0$ small.

THEOREM 1.3: In Case II. Suppose $N \geq 4$ and $(H_1) - (H_2)$ hold. Then there exist $\mu_0 > 0$, $\lambda_0 > 0$ *such that for* $\mu \in (0, \mu_0)$, *problem* (1.1) admits at least k *positive solutions with all* $\lambda \in (0, \lambda_0)$.

We prove Theorems 1.1, 1.2 and 1.3 by critical point theory. However, the functional $I_{\lambda,\mu}$ does not satisfy the Palais-Smale ((P.S.) in short) condition due to the lack of compactness of the embeddings: $H_0^1(\Omega) \hookrightarrow L^{2^*}(\Omega)$ and $H_0^1(\Omega) \hookrightarrow$ $L^2(\Omega, |x|^{-2})$. So the standard variational argument is not applicable directly; we need to analyze the effect of the coefficient Q and the energy range where $I_{\lambda,\mu}$ satisfies the Palais-Smale condition. We prove the existence of nontrivial solutions for any $\lambda > 0$ and multiple positive solutions of problem (1.1) with $\lambda > 0, \mu > 0$ small by the linking theorem and mountain pass lemma (see $[13, 16]$.

Throughout this paper, we denote the norm of $H_0^1(\Omega)$ by $|u| = (\int_{\Omega} |\nabla u|^2 dx)^{\frac{1}{2}}$, the norm of $L^l(\Omega)$ ($1 \leq l < \infty$) by | u| $_{L^l(\Omega)} = (\int_{\Omega} |u|^l dx)^{\frac{1}{l}}$ and positive constants (possibly different) by C, C_1, C_2, \ldots

2. Proof of Theorem 1.1

In this section, we first introduce some preliminary lemmas.

LEMMA 2.1: Let $0 \leq \mu < \bar{\mu}$. Then for every $\lambda > 0$, $I_{\lambda,\mu}$ satisfies the $(P.S.)_c$ *condition with* $c < c^*$, where

$$
c^* = \min\bigg\{\frac{S^{\frac{N}{2}}_{\mu}}{NQ(0)^{\frac{N-2}{2}}}, \frac{S^{\frac{N}{2}}_{0}}{NQ^{\frac{N-2}{M}}_{M}}\bigg\}.
$$

Proof: Assume that $\{u_n\} \subset H_0^1(\Omega)$ satisfies, as $n \longrightarrow \infty$,

$$
I_{\lambda,\mu}(u_n) \longrightarrow c < c^*, dI_{\lambda,\mu}(u_n) \longrightarrow 0
$$
 strongly in $H^{-1}(\Omega)$.

By the Hardy inequality, we easily get $|u_n| \leq C$. Therefore, up to a sub-

sequence, we may assume that

$$
u_n \rightharpoonup u
$$
 weakly in $H_0^1(\Omega)$;
\n
$$
u_n \rightharpoonup u
$$
 weakly in $L^2(\Omega, |x|^{-2}dx)$;
\n
$$
u_n \rightharpoonup u
$$
 weakly in $L^{2^*}(\Omega)$;
\n
$$
u_n \rightharpoonup u
$$
 at $L^2(\Omega)$;
\n
$$
u_n \rightharpoonup u
$$
 a.e. on Ω .

It is easy to verify that $u \in H_0^1(\Omega)$ is a weak solution of problem (1.1).

Hence, by the concentration compactness principle [12], there exists a subsequence, still denoted by $\{u_n\}$, at most countable set \mathcal{J} , a set of different points ${x_j}_{j \in \mathcal{J}}$, and ${\widetilde{\mu_j}}_{j \in \mathcal{J} \cup \{0\}}$, ${\widetilde{\nu_j}}_{j \in \mathcal{J} \cup \{0\}} \subset [0,\infty)$ such that

$$
|\nabla u_n|^2 \rightharpoonup d\widetilde{\mu} \ge |\nabla u|^2 + \sum_{j \in \mathcal{J}} \widetilde{\mu_j} \delta_{x_j} + \widetilde{\mu_0} \delta_0,
$$

\n
$$
|u_n|^{2^*} \rightharpoonup d\widetilde{\nu} = |u|^{2^*} + \sum_{j \in \mathcal{J}} \widetilde{\nu_j} \delta_{x_j} + \widetilde{\nu_0} \delta_0,
$$

\n
$$
\frac{|u_n|^2}{|x|^2} \rightharpoonup d\widetilde{\gamma} = \frac{|u|^2}{|x|^2} + \widetilde{\gamma_0} \delta_0,
$$

\n
$$
S_0 \widetilde{\nu_j}^{\frac{2}{2^*}} \le \widetilde{\mu_j} \quad \text{for } j \in \mathcal{J},
$$

\n
$$
S_{\mu} \widetilde{\nu_0}^{\frac{2}{2^*}} \le \widetilde{\mu_0} - \mu \widetilde{\gamma_0}.
$$

We claim that $\mathcal J$ is finite and that for any $j \in \mathcal J$, either $\widetilde{\nu}_j = 0$ or

$$
Q(x_j)\widetilde{\nu_j}\geq S_0^{\frac{N}{2}}/Q_M^{\frac{N-2}{2}}.
$$

In fact, let $\epsilon > 0$ be small enough such that $0 \notin B_{\epsilon}(x_j)(j \in \mathcal{J})$. Let ϕ^j be a smooth cut off function centered at x_j satisfying

$$
0 \le \phi^j \le 1, \phi^j(x) = \begin{cases} 1 & \text{if } |x - x_j| \le \frac{\epsilon}{2}, \\ 0 & \text{if } |x - x_j| \ge \epsilon, \end{cases} \text{ and } |\nabla \phi^j| \le \frac{4}{\epsilon}.
$$

Observe that

$$
\langle dI_{\lambda,\mu}(u_n), u_n \phi^j \rangle = \int_{\Omega} |\nabla u_n|^2 \phi^j dx + \int_{\Omega} u_n \nabla u_n \nabla \phi^j dx - \mu \int_{\Omega} \frac{|u_n|^2 \phi^j}{|x|^2} dx
$$

(2.1)

$$
- \lambda \int_{\Omega} |u_n|^2 \phi^j dx - \int_{\Omega} Q(x) |u_n|^{2^*} \phi^j dx,
$$

(2.2)

$$
\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^2 \phi^j dx = \int_{\Omega} \phi^j d\widetilde{\mu} \ge \int_{\Omega} |\nabla u|^2 \phi^j dx + \widetilde{\mu_j},
$$

$$
(2.3) \lim_{n \to \infty} \int_{\Omega} Q(x)|u_n|^{2^*} \phi^j dx = \int_{\Omega} Q(x) \phi^j d\tilde{\nu} = \int_{\Omega} Q(x)|u|^{2^*} \phi^j dx + Q(x_j)\tilde{\nu}_j,
$$

\n
$$
\lim_{\epsilon \to 0} \lim_{n \to \infty} \left| \int_{\Omega} u_n \nabla u_n \nabla \phi^j dx \right|
$$

\n
$$
\leq \lim_{\epsilon \to 0} \lim_{n \to \infty} \left(\left(\int_{\Omega} |\nabla u_n|^2 dx \right)^{\frac{1}{2}} \left(\int_{\Omega} |u_n|^2 |\nabla \phi^j|^2 dx \right)^{\frac{1}{2}} \right)
$$

\n
$$
\leq C \lim_{\epsilon \to 0} \left(\int_{\Omega} |u|^2 |\nabla \phi^j|^2 dx \right)^{\frac{1}{2}}
$$

\n
$$
\leq C \lim_{\epsilon \to 0} \left(\left(\int_{B_{\epsilon}(x_j)} |\nabla \phi^j|^N dx \right)^{\frac{1}{N}} \left(\int_{B_{\epsilon}(x_j)} |u|^{2^*} dx \right)^{\frac{1}{2^*}} \right)
$$

\n
$$
\leq C \lim_{\epsilon \to 0} \left(\int_{B_{\epsilon}(x_j)} |u|^{2^*} dx \right)^{\frac{1}{2^*}}
$$

\n= 0,

and

(2.5)
$$
\lim_{\epsilon \to 0} \lim_{n \to \infty} \int_{\Omega} \frac{|u_n|^2 \phi^j}{|x|^2} dx = 0, \lim_{\epsilon \to 0} \lim_{n \to \infty} \int_{\Omega} |u_n|^2 \phi^j dx = 0.
$$

Inserting (2.2) - (2.5) into (2.1) , we deduce

(2.6)
$$
0 = \lim_{\epsilon \to 0} \lim_{n \to \infty} \langle dI_{\lambda,\mu}(u_n), u_n \phi^j \rangle \ge \widetilde{\mu_j} - Q(x_j) \widetilde{\nu_j}.
$$

Since $S_0 \tilde{\nu}_j^{\frac{2}{2^*}} \leq \tilde{\mu}_j$ for $j \in \mathcal{J}$, together with (2.6), we infer that $\tilde{\nu}_j = 0$ or $Q(x_j)\tilde{\nu}_j \geq S_0^{\frac{N-2}{2}}/Q_M^{\frac{N-2}{2}}$, which implies that \mathcal{J} is finite.

Now we consider the possibility of concentration at the origin. Let $\epsilon > 0$ be small enough such that $x_j \notin B_{\epsilon}(0)$ $(j \in \mathcal{J})$. Let ϕ be a smooth cut off function centered at 0 satisfying

$$
0 \leq \phi \leq 1, \phi(x) = \begin{cases} 1 & \text{if } |x| \leq \frac{\epsilon}{2}, \\ 0 & \text{if } |x| \geq \epsilon, \end{cases} \text{ and } |\nabla \phi| \leq \frac{4}{\epsilon}.
$$

Then we have

$$
\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^2 \phi dx = \int_{\Omega} \phi d\tilde{\mu} \ge \int_{\Omega} |\nabla u|^2 \phi dx + \widetilde{\mu_0},
$$

$$
\lim_{n \to \infty} \int_{\Omega} Q(x) |u_n|^{2^*} \phi dx = \int_{\Omega} Q(x) \phi d\tilde{\nu} = \int_{\Omega} Q(x) |u|^{2^*} \phi dx + Q(0) \widetilde{\nu_0},
$$

$$
\lim_{n \to \infty} \int_{\Omega} \frac{|u_n|^2 \phi}{|x|^2} dx = \lim_{n \to \infty} \int_{\Omega} \phi d\tilde{\gamma} = \int_{\Omega} \frac{|u|^2 \phi}{|x|^2} dx + \widetilde{\gamma_0},
$$

$$
\lim_{\epsilon \to 0} \lim_{n \to \infty} \int_{\Omega} u_n \nabla u_n \nabla \phi dx = 0,
$$

$$
\lim_{\epsilon \to 0} \lim_{n \to \infty} \int_{\Omega} |u_n|^2 \phi dx = 0.
$$

Hence, we conclude that

(2.7)
$$
0 = \lim_{\epsilon \to 0} \lim_{n \to \infty} \langle dI_{\lambda,\mu}(u_n), u_n \phi \rangle \ge \widetilde{\mu_0} - \mu \widetilde{\gamma_0} - Q(0) \widetilde{\nu_0}.
$$

Since $S_{\mu}\widetilde{\nu_0}^{\frac{2}{2^*}} \leq \widetilde{\mu_0} - \mu\widetilde{\gamma_0}$, together with (2.7), we get

$$
S_{\mu}\widetilde{\nu_0}^{\frac{2}{2^*}} \leq Q(0)\widetilde{\nu_0},
$$

which implies that $\widetilde{\nu_0} = 0$ or $\widetilde{\nu_0} \geq (\frac{S_\mu}{Q(0)})^{\frac{N}{2}}$.

From the above arguments, we conclude

$$
c = I_{\lambda,\mu}(u_n) - \frac{1}{2} \langle dI_{\lambda,\mu}(u_n), u_n \rangle + o(1)
$$

=
$$
\frac{1}{N} \int_{\Omega} Q(x) |u_n|^{2^*} dx + o(1)
$$

=
$$
\frac{1}{N} \bigg(\int_{\Omega} Q(x) |u|^{2^*} dx + \sum_{j \in J} Q(x_j) \widetilde{\nu_j} + Q(0) \widetilde{\nu_0} \bigg).
$$

If there is a $j \in \mathcal{J} \cup \{0\}$ such that $\widetilde{\nu}_j \neq 0$, then we infer that

$$
c \ge \min\bigg\{\frac{S_{\mu}^{\frac{N}{2}}}{NQ(0)^{\frac{N-2}{2}}}, \frac{S_{0}^{\frac{N}{2}}}{NQ_{M}^{\frac{N-2}{2}}}\bigg\} = c^{*},
$$

which contradicts the assumption on c .

Hence, up to a subsequence, we derive that $u_n \longrightarrow u$ strongly in $H_0^1(\Omega)$. **|**

Denote by $B_r(y)$ the ball of radius r centered at the point $y \in \Omega$; we have $B_{\frac{2}{m}}(y) \subset \Omega$ for m large enough. For $0 \leq \mu < \bar{\mu}$, let

$$
H^- = span\{e_{\mu,1}, e_{\mu,2}, \ldots, e_{\mu,k}\}, \quad H^+ = (H^-)^{\perp}.
$$

Fix k, define the approximating eigenfunctions $e_{\mu,i}^m = \xi_m e_{\mu,i}$ (i = 1, 2,...) and the space

$$
H_m^- = span\{e_{\mu,1}^m, e_{\mu,2}^m, \ldots, e_{\mu,k}^m\},\,
$$

where

$$
\xi_m(x) = \begin{cases} 0 & \text{if } x \in B_{\frac{1}{m}}(0), \\ m|x| - 1 & \text{if } x \in B_{\frac{2}{m}}(0) \setminus B_{\frac{1}{m}}(0), \\ 1 & \text{if } x \in \Omega \setminus B_{\frac{2}{m}}(0). \end{cases}
$$

We have the following error estimates, which can be found in [3]:

LEMMA 2.2: Let $0 \leq \mu < \bar{\mu}$. Then

- (i) $|e^m_{\mu,i} e_{\mu,i}| \longrightarrow 0 \text{ as } m \longrightarrow \infty;$
- (ii) $\max_{\{u \in H_m^+, \|u\|_{L^2(\Omega)}=1\}} \|u\|^2 \leq \lambda_{\mu,k} + Cm^{-2\sqrt{\bar{\mu}-\mu}}.$

For any $m > 0, \epsilon > 0$, we define

$$
(2.8) \t u_{\epsilon}^{m}(x) = \begin{cases} U_{\mu,\epsilon}(x) - \frac{(4\epsilon^{2}N(\bar{\mu}-\mu)/(N-2))^{\frac{N-2}{4}}}{(\epsilon^{2}(\frac{1}{m})^{\frac{\gamma'}{\sqrt{\mu}}}+(\frac{1}{m})^{\frac{\gamma}{\sqrt{\mu}}})^{\sqrt{\mu}}} & \text{if } x \in B_{\frac{1}{m}}(0),\\ 0 & \text{if } x \in \Omega \setminus B_{\frac{1}{m}}(0). \end{cases}
$$

The following estimates hold (see [9]): For any $0 \leq \mu < \bar{\mu}$,

(2.9)
$$
\int_{\Omega} \left(|\nabla u_{\epsilon}^{m}|^{2} - \mu \frac{(u_{\epsilon}^{m})^{2}}{|x|^{2}} \right) dx \leq S_{\mu}^{\frac{N}{2}} + C_{1} \epsilon^{N-2} m^{2 \sqrt{\mu - \mu}},
$$

(2.10)
$$
\int_{\Omega} |u_{\epsilon}^{m}|^{2^{*}} dx \geq S_{\mu}^{\frac{N}{2}} - C_{2} \epsilon^{N} m^{\frac{2N}{N-2}\sqrt{\mu-\mu}}.
$$

Set

$$
c_{\epsilon} = \inf_{h \in \Gamma_{\epsilon,m}} \max_{u \in Q_{\epsilon,m}} I_{\lambda,\mu}(h(u)),
$$

where

$$
\Gamma_{\epsilon,m} = \{ h \in C(Q_{\epsilon,m}, H_0^1(\Omega)) | h(u) = u, \forall u \in \partial Q_{\epsilon,m} \}
$$

and

$$
Q_{\epsilon,m} = (\overline{B_R(0)} \cap H_m^-) \oplus \{ ru_{\epsilon}^m | 0 \le r \le R \}.
$$

Then we have the following:

LEMMA 2.3: Let the assumption (H_1) hold and $\mu \in [0, \bar{\mu} - (\frac{N+2}{N})^2)$. Then for $\text{any } \lambda > 0, \, c_\epsilon < S^{N\over 2}_\mu/NQ(0)^{N-2\over 2}$

Proof: Without loss of generality, we may assume that there exists an integer k such that $\lambda_{\mu,k} \leq \lambda < \lambda_{\mu,k+1}$. Let $\max_{u \in Q_{\epsilon,m}} I_{\lambda,\mu}(u) = I_{\lambda,\mu}(w^m_{\mu} + t^m_{\mu,\epsilon}w^m_{\epsilon}),$

where $w_{\mu}^{m} \in H_{m}^{-}$. By (ii) of Lemma 2.2, we get (2.11)

$$
I_{\lambda,\mu}(w_{\mu}^{m}) = \frac{1}{2} \int_{\Omega} \left(|\nabla w_{\mu}^{m}|^{2} - \mu \frac{(w_{\mu}^{m})^{2}}{|x|^{2}} - \lambda (w_{\mu}^{m})^{2} \right) dx - \frac{1}{2^{*}} \int_{\Omega} Q(x) |w_{\mu}^{m}|^{2^{*}} dx
$$

\n
$$
\leq \frac{\lambda_{\mu,k} - \lambda}{2} \int_{\Omega} (w_{\mu}^{m})^{2} dx + Cm^{-2\sqrt{\mu-\mu}} \int_{\Omega} (w_{\mu}^{m})^{2} dx - \frac{1}{2^{*}} \min_{\overline{\Omega}} Q(x)
$$

\n
$$
\int_{\Omega} |w_{\mu}^{m}|^{2^{*}} dx
$$

\n
$$
\leq Cm^{-2\sqrt{\mu-\mu}} |w_{\mu}^{m}|^{2} \Big|_{L^{2^{*}}(\Omega)}^{2^{*}} - \frac{1}{2^{*}} \min_{\overline{\Omega}} Q(x) |w_{\mu}^{m}|^{2^{*}} \Big|_{L^{2^{*}}(\Omega)}^{2^{*}}
$$

\n
$$
\leq \max_{t \geq 0} (Cm^{-2\sqrt{\mu-\mu}} t^{2} - \frac{1}{2^{*}} \min_{\overline{\Omega}} Q(x) t^{2^{*}})
$$

\n
$$
\leq Cm^{-N\sqrt{\mu-\mu}}.
$$

On the other hand, as in [9], choose $\epsilon = m^{-\frac{N-2}{N-2}\sqrt{\mu-\mu}}$. Thus as $m \to \infty$, (2.9) and (2.10) become respectively

(2.12)
$$
\int_{\Omega} \left(|\nabla u_{\epsilon}^m|^2 - \mu \frac{(u_{\epsilon}^m)^2}{|x|^2} \right) dx \leq S_{\mu}^{\frac{N}{2}} + C_1 m^{-N\sqrt{\mu - \mu}},
$$

(2.13)
$$
\int_{\Omega} |u_{\epsilon}^{m}|^{2^{*}} dx \geq S_{\mu}^{\frac{N}{2}} - C_{2} m^{-\frac{N^{2}}{N-2} \sqrt{\mu - \mu}}.
$$

From (2.13) and the assumption of (H_1) , we easily deduce that for m large enough

$$
(2.14) \qquad \qquad \int_{\Omega} Q(x) |u_{\epsilon}^{m}|^{2^{*}} dx \geq Q(0) S_{\mu}^{\frac{N}{2}} - C_{3} m^{-\frac{N^{2}}{N-2}\sqrt{\mu-\mu}}.
$$

Furthermore,

(2.15)
$$
\int_{\Omega} |u_{\epsilon}^{m}|^{2} dx \geq C_{4} m^{-(N+2)}.
$$

Observe that $id \in \Gamma_{\epsilon,m}$ and $|supp w_\mu^m \cap supp w_\epsilon^m| = 0$. From (2.11), (2.12),

 (2.14) and (2.15) , we conclude that

$$
c_{\epsilon} \leq \max_{u \in Q_{\epsilon,m}} I_{\lambda,\mu}(u)
$$

\n
$$
=I_{\lambda,\mu}(w_{\mu}^{m}+t_{\mu,\epsilon}^{m}u_{\epsilon}^{m})
$$

\n
$$
=I_{\lambda,\mu}(w_{\mu}^{m})+I_{\lambda,\mu}(t_{\mu,\epsilon}^{m}u_{\epsilon}^{m})
$$

\n
$$
\leq Cm^{-N\sqrt{\mu-\mu}}+\frac{(t_{\mu,\epsilon}^{m})^{2}}{2}\int_{\Omega} \left(|\nabla u_{\epsilon}^{m}|^{2} - \mu \frac{(u_{\epsilon}^{m})^{2}}{|x|^{2}} - \lambda (u_{\epsilon}^{m})^{2} \right) dx
$$

\n
$$
-\frac{(t_{\mu,\epsilon}^{m})^{2^{*}}}{2^{*}}\int_{\Omega} Q(x)|u_{\epsilon}^{m}|^{2^{*}} dx
$$

\n(2.16)
\n
$$
\leq Cm^{-N\sqrt{\mu-\mu}}+\frac{(t_{\mu,\epsilon}^{m})^{2}}{2}(S_{\mu}^{\frac{N}{2}}+C_{1}m^{-N\sqrt{\mu-\mu}}-\lambda C_{4}m^{-(N+2)})
$$

\n
$$
-\frac{(t_{\mu,\epsilon}^{m})^{2^{*}}}{2^{*}}\left(Q(0)S_{\mu}^{\frac{N}{2}}-C_{3}m^{-\frac{N^{2}}{N-2}\sqrt{\mu-\mu}}\right)
$$

\n
$$
\leq Cm^{-N\sqrt{\mu-\mu}}+\frac{1}{N}(S_{\mu}^{\frac{N}{2}}+C_{1}m^{-N\sqrt{\mu-\mu}}-\lambda C_{4}m^{-(N+2)})
$$

\n
$$
\times \left(\frac{S_{\mu}^{\frac{N}{2}}+C_{1}m^{-N\sqrt{\mu-\mu}}-\lambda C_{4}m^{-(N+2)}\sqrt{\frac{N-2}{2}}}{Q(0)S_{\mu}^{\frac{N}{2}}-C_{3}m^{-\frac{N^{2}}{N-2}\sqrt{\mu-\mu}}}\right)^{\frac{N-2}{2}},
$$

where we use the following fact:

$$
\max_{t\geq 0} \left(\frac{t^2}{2}A - \frac{t^{2^*}}{2^*}B\right) = \frac{1}{N}A\left(\frac{A}{B}\right)^{\frac{N-2}{2}}, \quad A, B > 0.
$$

Note that $0 \leq \mu < \bar{\mu} - (\frac{N+2}{N})^2$, and then $N + 2 < N\sqrt{\bar{\mu} - \mu} < \frac{N^2}{N-2}\sqrt{\bar{\mu} - \mu}$. Hence, for m large enough, we deduce from (2.16) that

$$
c_{\epsilon} \le \frac{S_{\mu}^{\frac{N}{2}}}{NQ(0)^{\frac{N-2}{2}}} + Cm^{-N\sqrt{\mu-\mu}} - C_5 m^{-(N+2)} < \frac{S_{\mu}^{\frac{N}{2}}}{NQ(0)^{\frac{N-2}{2}}}.
$$

Proof of Theorem 1.1: From [9], for m, R large enough $I_{\lambda,\mu}$ satisfies all the assumptions of the linking theorem [I3] except for the *(P.S.)c* condition, i.e.,

(i) There exist $\alpha_0, \rho_0 > 0$ such that

 $I_{\lambda,\mu}(u) \geq \alpha_0 \quad \forall u \in \partial B_{\rho_0}(0) \cap H^+.$

(ii) There exists $R_0 > \rho_0$ such that

$$
I_{\lambda,\mu}|_{\partial Q_{\epsilon,m}} \le \omega(m) \quad \text{with } \omega(m) \longrightarrow 0 \text{ as } m \longrightarrow \infty.
$$

Moreover, $\partial B_{\rho_0}(0) \cap H^+$ and $\partial Q_{\epsilon,m}$ link (cf. [13]). Then we obtain a Palais-Smale sequence $\{u_n\}$ for $I_{\lambda,\mu}$ at level c_{ϵ} ; moreover,

$$
c_{\epsilon} \ge \inf_{u \in \partial B_{\rho_0}(0) \cap H^+} I_{\lambda,\mu}(u) \ge \alpha_0 > 0
$$

(see Theorem 2.12 in [16]). By Lemma 2.1 and Lemma 2.3, we infer that there is a subsequence of $\{u_n\}$, still denoted by $\{u_n\}$, and a function $u \in H_0^1(\Omega)$, such that

$$
u_n \longrightarrow u
$$
 strongly in $H_0^1(\Omega)$,

and then c_{ϵ} is a critical value of $I_{\lambda,\mu}$ and u is a nontrivial solution of problem $(1.1).$

3. Proof of Theorem 1.2

In this section, we consider Case II: $Q(0) < Q_M(\frac{\omega_\mu}{S_0})^{\overline{N-2}}$. Observe that $S_\mu \leq S_0$; we easily infer that $a_i \neq 0$ ($1 \leq i \leq k$), where $a_i \in \Omega$ satisfies $Q(a_i) = Q_M =$ $\max_{\overline{\Omega}} Q(x)$. So $B_{\frac{2}{m}}(a_i) \subset \Omega$ for m large enough. Set

$$
H_0^- = span\{e_{0,1}, e_{0,2}, \ldots, e_{0,k}\}, H_0^+ = (H_0^-)^{\perp},
$$

where $e_{0,i}$ $(i = 1, 2, ...)$ are the eigenfunctions $e_{\mu,i}$ for $\mu = 0$ in section 1.

Fix k ; define the space

$$
H_{0,m}^- = span\{e_{0,1}^m, e_{0,2}^m, \ldots, e_{0,k}^m\},\
$$

where $e_{0,j}^m = \zeta_m e_{0,j}$ $(j = 1, 2, \ldots),$

$$
\zeta_m(x) = \begin{cases} 0 & \text{if } x \in B_{\frac{1}{m}}(a_i), \\ m|x - a_i| - 1 & \text{if } x \in B_{\frac{2}{m}}(a_i) \setminus B_{\frac{1}{m}}(a_i), \\ 1 & \text{if } x \in \Omega \setminus B_{\frac{2}{m}}(a_i). \end{cases}
$$

For any $m > 0, \epsilon > 0$, we define

$$
v_{\epsilon,a_i}^m(x) = \begin{cases} U_{0,\epsilon}(x-a_i) - \frac{(\epsilon^2 N(N-2))^{\frac{N-2}{4}}}{(\epsilon^2 + (\frac{1}{m})^2)^{\sqrt{\mu}}} & \text{if } x \in B_{\frac{1}{m}}(a_i), \\ 0 & \text{if } x \in \Omega \setminus B_{\frac{1}{m}}(a_i). \end{cases}
$$

The following estimates hold:

(3.1)
$$
\int_{\Omega} |\nabla v_{\epsilon, a_i}^m|^2 dx \leq S_0^{\frac{N}{2}} + C \epsilon^{N-2} m^{N-2},
$$

(3.2)
$$
\int_{\Omega} |v_{\epsilon,a_i}^m|^{2^*} dx \geq S_0^{\frac{N}{2}} - C\epsilon^N m^N.
$$

In fact, choosing $\mu = 0$ in (2.9) and (2.10) respectively, we get (3.1) and (3.2) immediately.

Set

$$
c_{\epsilon}^* = \inf_{h \in \Gamma_{\epsilon,m}^*} \max_{u \in Q_{\epsilon,m}^*} I_{\lambda,\mu}(h(u)),
$$

370 **P. HAN** Isr. J. Math.

where

$$
\Gamma_{\epsilon,m}^* = \{ h \in C(Q_{\epsilon,m}^*, H_0^1(\Omega)) | h(u) = u, \forall u \in \partial Q_{\epsilon,m}^* \}
$$

and

$$
Q_{\epsilon,m}^* = (\overline{B_R(a_i)} \cap H_{0,m}^-) \oplus \{rv_{\epsilon,a_i}^m \mid 0 \leq r \leq R\}.
$$

Then we have the following:

LEMMA 3.1: *Assume that* $N \geq 5$, $\mu \geq 0$ *and the assumption of* (H_2) *holds. Then for any* $\lambda > 0$, $c_{\epsilon}^{*} < S_{0}^{2}/NQ_{\mathcal{M}}$

Proof: As in the proof of Lemma 2.3, we suppose $\lambda_{0,k} \leq \lambda < \lambda_{0,k+1}$ for some integer k. Let $\max_{u \in Q_{\epsilon,m}^*} I_{\lambda,\mu}(u) = I_{\lambda,\mu}(w_0^m + t_{0,\epsilon}^m v_{\epsilon,a_i}^m)$, where $w_0^m \in H_{0,m}^-$. By (ii) of Lemma 2.2 (the case: $\mu = 0$), we derive (3.3)

$$
I_{\lambda,\mu}(w_0^m) = \frac{1}{2} \int_{\Omega} \left(|\nabla w_0^m|^2 - \mu \frac{(w_0^m)^2}{|x|^2} - \lambda (w_0^m)^2 \right) dx - \frac{1}{2^*} \int_{\Omega} Q(x) |w_0^m|^{2^*} dx
$$

\n
$$
\leq \frac{\lambda_{0,k} - \lambda}{2} \int_{\Omega} (w_0^m)^2 dx + Cm^{-(N-2)} \int_{\Omega} (w_0^m)^2 dx - \frac{1}{2^*} \min_{\overline{\Omega}} Q(x)
$$

\n
$$
\int_{\Omega} |w_0^m|^{2^*} dx
$$

\n
$$
\leq Cm^{-(N-2)} |w_0^m|_{L^{2^*}(\Omega)}^2 - \frac{1}{2^*} \min_{\overline{\Omega}} Q(x) |w_0^m|_{L^{2^*}(\Omega)}^{2^*}
$$

\n
$$
\leq \max_{t \geq 0} (Cm^{-(N-2)}t^2 - \frac{1}{2^*} \min_{\overline{\Omega}} Q(x) t^{2^*})
$$

\n
$$
\leq Cm^{-\frac{N(N-2)}{2}}.
$$

On the other hand, choosing $\mu = 0$ in (2.12), (2.13), and $\epsilon = m^{-(N+2)/2}$, we get as $m \longrightarrow \infty$

(3.4)
$$
\int_{\Omega} |\nabla v_{\epsilon,a_i}^m|^2 dx \leq S_0^{\frac{N}{2}} + C m^{-\frac{N(N-2)}{2}},
$$

(3.5)
$$
\int_{\Omega} |v_{\epsilon,a_i}^m|^{2^*} dx \geq S_0^{\frac{N}{2}} - Cm^{-\frac{N^2}{2}}.
$$

From the assumption of (H_2) , and after a direct calculation, we get

(3.6)
$$
\int_{\Omega} Q(x) |v_{\epsilon,a_i}^m|^{2^*} dx \geq Q(a_i) S_0^{\frac{N}{2}} - C m^{-\frac{N^2}{2}}.
$$

In addition,

(3.7)
$$
\int_{\Omega} |v_{\epsilon,a_i}^m|^2 dx \geq C m^{-(N+2)}.
$$

Observe that $id \in \Gamma_{\epsilon,m}^*$ and $|supp w_0^m \cap supp_{\epsilon,a_i}^m| = 0$. We deduce from (3.3) – (3.7) that

$$
c_{\epsilon}^{*} \leq \max_{u \in Q_{\epsilon,m}^{*}} I_{\lambda,\mu}(u)
$$

\n
$$
=I_{\lambda,\mu}(w_{0}^{m} + t_{0,\epsilon}^{m} v_{\epsilon,a_{i}}^{m})
$$

\n
$$
=I_{\lambda,\mu}(w_{0}^{m}) + I_{\lambda,\mu}(t_{0,\epsilon}^{m} v_{\epsilon,a_{i}}^{m})
$$

\n
$$
\leq C m^{-\frac{N(N-2)}{2}} + \frac{(t_{0,\epsilon}^{m})^{2}}{2} \int_{\Omega} (|\nabla v_{\epsilon,a_{i}}^{m}|^{2} - \lambda (v_{\epsilon,a_{i}}^{m})^{2}) dx
$$

\n
$$
- \frac{(t_{0,\epsilon}^{m})^{2}}{2^{*}} \int_{\Omega} Q(x) |v_{\epsilon,a_{i}}^{m}|^{2^{*}} dx
$$

\n
$$
\leq C m^{-\frac{N(N-2)}{2}} + \frac{(t_{0,\epsilon}^{m})^{2}}{2} (S_{0}^{\frac{N}{2}} + C m^{-\frac{N(N-2)}{2}} - \lambda C m^{-(N+2)})
$$

\n
$$
- \frac{(t_{0,\epsilon}^{m})^{2^{*}}}{2^{*}} (Q(a_{i}) S_{0}^{\frac{N}{2}} - C m^{-\frac{N^{2}}{2}})
$$

\n
$$
\leq C m^{-\frac{N(N-2)}{2}} + \frac{1}{N} (S_{0}^{\frac{N}{2}} + C m^{-\frac{N(N-2)}{2}} - \lambda C m^{-(N+2)})
$$

\n
$$
\times \left(\frac{S_{0}^{\frac{N}{2}} + C m^{-\frac{N(N-2)}{2}} - \lambda C m^{-(N+2)}}{Q(a_{i}) S_{0}^{\frac{N}{2}} - C m^{-\frac{N^{2}}{2}} \right)^{\frac{N-2}{2}},
$$

Note that for $N \ge 5$, $N + 2 < N(N-2)/2 < N^2/2$. Hence, for m large enough, we derive that

$$
c_{\epsilon}^* \leq \frac{S_0^{\frac{N}{2}}}{NQ(a_i)^{\frac{N-2}{2}}} + Cm^{-\frac{N(N-2)}{2}} - Cm^{-(N+2)} < \frac{S_0^{\frac{N}{2}}}{NQ(a_i)^{\frac{N-2}{2}}}.
$$

Proof of Theorem 1.2: From [9], for m, R large enough $I_{\lambda,\mu}$ satisfies all the assumptions of the linking theorem [13]. Namely,

(i) There exist $\alpha, \rho > 0$ such that

$$
I_{\lambda,\mu}(v) \ge \alpha \quad \forall v \in \partial B_{\rho}(a_i) \cap H_0^+.
$$

(ii) There exists $R > \rho$ such that

$$
I_{\lambda,\mu}|_{\partial Q_{\sigma,m}^*} \leq p(m)
$$
 with $p(m) \longrightarrow 0$ as $m \longrightarrow \infty$.

Moreover, $\partial B_{\rho}(a_i) \cap H_0^+$ and $\partial Q_{\epsilon,m}^*$ link (cf. [13]). Then we obtain a Palais-Smale sequence $\{v_n\}$ for $I_{\lambda,\mu}$ at level c_{ϵ}^* ; moreover,

$$
c_{\epsilon}^* \ge \inf_{v \in \partial B_{\rho}(a_i) \cap H_0^+} I_{\lambda,\mu}(v) \ge \alpha > 0
$$

(see Theorem 2.12 in [16]). By Lemma 2.1 and Lemma 3.1, up to a subsequence, we may assume that

$$
v_n \longrightarrow v
$$
 strongly in $H_0^1(\Omega)$,

and then c_{ϵ}^{*} is a critical value of $I_{\lambda,\mu}$ and v is a solution of problem (1.1). **I**

4. Proof of Theorem 1.3

In this section, we first give some preliminary notation and useful lemmas.

Choosing $r_0 > 0$ small enough such that $0 \notin B_{r_0}(a_i), B_{r_0}(a_i) \subset \Omega$ and $B_{r_0}(a_i) \cap B_{r_0}(a_j) = \emptyset$ for $i \neq j, i, j = 1, 2, ..., k$.

Define

$$
g_i(u) = \frac{\int_{\Omega} \psi_i(x) |\nabla u|^2 dx}{\int_{\Omega} |\nabla u|^2 dx}, \quad \psi_i(x) = \min\{1, |x - a_i|\}, \quad 1 \leq i \leq k
$$

Then we have the following separation result.

LEMMA 4.1: If $g_i(u) \leq r_0/3$ and $g_j(u) \leq r_0/3$ for $u \in H_0^1(\Omega) \setminus \{0\}$, then $i = j$.

Proof: For any $u \in H_0^1(\Omega) \setminus \{0\}$ satisfying $g_i(u) \leq r_0/3$ $(1 \leq i \leq k)$, we have

$$
\frac{r_0}{3} \int_{\Omega} |\nabla u|^2 dx \ge \int_{\Omega} \psi_i(x) |\nabla u|^2 dx \ge \int_{\Omega \setminus B_{r_0}(a_i)} \psi_i(x) |\nabla u|^2 dx
$$

$$
\ge r_0 \int_{\Omega \setminus B_{r_0}(a_i)} |\nabla u|^2 dx,
$$

which implies that

(4.1)
$$
\int_{\Omega} |\nabla u|^2 dx \geq 3 \int_{\Omega \setminus B_{r_0}(a_i)} |\nabla u|^2 dx, \quad 1 \leq i \leq k.
$$

Hence, from (4.1), we obtain

$$
2\int_{\Omega} |\nabla u|^2 dx \ge 3\left(\int_{\Omega \setminus B_{r_0}(a_i)} |\nabla u|^2 dx + \int_{\Omega \setminus B_{r_0}(a_j)} |\nabla u|^2 dx\right)
$$

$$
\ge 3\int_{\Omega} |\nabla u|^2 dx \quad \text{if } i \ne j,
$$

which is a contradiction. \blacksquare

Set

$$
\mathcal{N}(\lambda, \mu) = \{ u \in H_0^1(\Omega) \setminus \{0\} | \langle dI_{\lambda, \mu}(u), u \rangle = 0 \},
$$

$$
\mathcal{N}_i(\lambda, \mu) = \{ u \in \mathcal{N}(\lambda, \mu) | g_i(u) < r_0/3 \},
$$

and

$$
\mathcal{O}_i(\lambda,\mu) = \{u \in \mathcal{N}(\lambda,\mu)| \ g_i(u) = r_0/3\}.
$$

Define

$$
c_i(\lambda,\mu) := \inf_{u \in \mathcal{N}_i(\lambda,\mu)} I_{\lambda,\mu}(u) \quad \text{and} \quad \overline{c_i}(\lambda,\mu) := \inf_{u \in \mathcal{O}_i(\lambda,\mu)} I_{\lambda,\mu}(u),
$$

 $i = 1,2,\ldots,k.$

Then we have

LEMMA 4.2:
$$
c_i(\lambda, \mu) < S_0^{\frac{N}{2}}/N Q_M^{\frac{N-2}{2}}
$$
.

Proof: Let $\rho > 0$ be small enough such that $0 \notin B_{\rho}(a_i)$ for $i = 1, 2, ..., k$, and $B_{\rho}(a_i) \subset \Omega$. Set $w_{\epsilon}^{a_i}(x) = \varphi(x)W_{\epsilon}^{a_i}(x)$, where

$$
W_{\epsilon}^{a_i}(x) = \frac{(N(N-2)\epsilon)^{\frac{N-2}{4}}}{(\epsilon + |x - a_i|^2)^{\frac{N-2}{2}}} \quad \text{and} \quad 0 \le \varphi \le 1, \quad \varphi(x) = \begin{cases} 1 & \text{if } |x - a_i| \le \frac{\rho}{2}, \\ 0 & \text{if } |x - a_i| \ge \rho. \end{cases}
$$

Then we have $t^{a_i}_\epsilon w^{a_i}_\epsilon \in \mathcal{N}(\lambda, \mu)$, where

$$
t_{\epsilon}^{a_i} = \Big(\frac{\int_{\Omega} (|\nabla w_{\epsilon}^{a_i}|^2 - \mu \frac{|w_{\epsilon}^{a_i}|^2}{|x|^2} - \lambda |w_{\epsilon}^{a_i}|^2) dx}{\int_{\Omega} Q(x) |w_{\epsilon}^{a_i}|^2 dx}\Big)^{\frac{N-2}{4}}.
$$

Furthermore,

$$
g_i(t_{\epsilon}^{a_i}w_{\epsilon}^{a_i}) = \frac{\int_{\Omega} \psi_i(x)|\nabla w_{\epsilon}^{a_i}(x)|^2 dx}{\int_{\Omega} |\nabla w_{\epsilon}^{a_i}(x)|^2 dx}
$$

=
$$
\frac{\int_{\Omega - a_i} \psi_i(a_i + \epsilon y)|\nabla(\varphi(a_i + \epsilon y)W_1^0(y))|^2 dy}{\int_{\Omega - a_i} |\nabla(\varphi(a_i + \epsilon y)W_1^0(y))|^2 dy}
$$

\$\longrightarrow \psi_i(a_i) = 0 \text{ as } \epsilon \longrightarrow 0.

Hence, there exists $\epsilon_0 > 0$ such that for any $\epsilon \in (0, \epsilon_0)$, $g_i(t^{a_i}_\epsilon w^{a_i}_\epsilon) < r_0/3$, which implies $t^{a_i}_\epsilon w^{a_i}_\epsilon \in \mathcal{N}_i(\lambda,\mu),\, 1\leq i\leq k.$ Therefore, we get

(4.2)

$$
c_i(\lambda, \mu) \le I_{\lambda, \mu}(t_{\epsilon}^{a_i} w_{\epsilon}^{a_i}) = \max_{t \ge 0} I_{\lambda, \mu}(tw_{\epsilon}^{a_i})
$$

$$
= \Big(\frac{\int_{\Omega} (|\nabla w_{\epsilon}^{a_i}|^2 - \mu \frac{|w_{\epsilon}^{a_i}|^2}{|x|^2} - \lambda |w_{\epsilon}^{a_i}|^2) dx}{(\int_{\Omega} Q(x) |w_{\epsilon}^{a_i}|^{2^*} dx)^{\frac{2}{2^*}}}\Big)^{\frac{N}{2}}.
$$

From [2], we know that the following estimates hold:

(4.3)
$$
\int_{\Omega} |\nabla w_{\epsilon}^{a_i}|^2 dx = \int_{R^N} |\nabla W_1^0|^2 dx + O(\epsilon^{\frac{N-2}{2}}),
$$

(4.4)
$$
\int_{\Omega} |w_{\epsilon}^{a_i}|^{2^*} dx = \int_{R^N} |W_1^0|^{2^*} dx + O(\epsilon^{\frac{N}{2}}),
$$

(4.5)
$$
\int_{\Omega} |w_{\epsilon}^{a_i}|^2 dx = L(\epsilon) = \begin{cases} C\epsilon + O(\epsilon^{\frac{N-2}{2}}) & \text{if } N \geq 5, \\ C\epsilon |\log \epsilon| + O(\epsilon) & \text{if } N = 4, \end{cases}
$$

To proceed further, we need to estimate the two terms in (4.2):

$$
\int_{\Omega} \frac{|w_{\epsilon}^{a_i}|^2}{|x|^2} dx \text{ and } \int_{\Omega} Q(x)|w_{\epsilon}^{a_i}|^2 dx.
$$

$$
\int_{\Omega} \frac{|w_{\epsilon}^{a_i}|^2}{|x|^2} dx \geq C\epsilon^{\frac{N-2}{2}} \int_{B_{\frac{\rho}{2}}(a_i)} \frac{dx}{|x|^2(\epsilon + |x - a_i|^2)^{N-2}}
$$

$$
\geq C\epsilon^{\frac{N-2}{2}} \int_{B_{\frac{\rho}{2}}(0)} \frac{dy}{|y + a_i|^2(\epsilon + |y|^2)^{N-2}}
$$

(4.6)

$$
\geq C\epsilon^{\frac{N-2}{2}} \int_{B_{\frac{\rho}{2}}(0)} \frac{dy}{(|y|^2 + |a_i|^2)(\epsilon + |y|^2)^{N-2}}
$$

$$
\geq C\epsilon^{\frac{N-2}{2}} \int_{0}^{\frac{\rho}{2}} \frac{r^{N-1}}{(\epsilon + r^2)^{N-2}}
$$

$$
\geq C\epsilon.
$$

It follows from the assumption of (H_2) that for any $\eta > 0$, there exists $\rho > 0$ small enough such that for $x \in B_{\rho}(a_i)$, $|Q(x) - Q(a_i)| \leq \eta |x - a_i|^2$. So we have

$$
\left| \int_{\Omega} (Q(x) - Q(a_i)) |w_{\epsilon}^{a_i}|^{2^*} dx \right| \leq \int_{B_{\rho}(a_i)} |Q(x) - Q(a_i)| |w_{\epsilon}^{a_i}|^{2^*} dx
$$

\n
$$
\leq C \eta \epsilon^{\frac{N}{2}} \int_{B_{\rho}(a_i)} \frac{|x - a_i|^2}{(\epsilon + |x - a_i|^2)^N} dx
$$

\n
$$
\leq C \eta \epsilon^{\frac{N}{2}} \int_0^{\rho} \frac{r^{N+1}}{(\epsilon + r^2)^N} dr
$$

\n
$$
\leq C \eta \epsilon \int_0^{\frac{\rho}{\sqrt{\epsilon}}} \frac{t^{N+1}}{(1 + t^2)^N} dt
$$

\n
$$
\leq C \eta \epsilon,
$$

which implies

(4.7)
$$
\int_{\Omega} (Q(x) - Q(a_i)) |w_{\epsilon}^{a_i}|^{2^*} dx = o(\epsilon).
$$

Thus, from (4.7), we derive

$$
\int_{\Omega} Q(x)|w_{\epsilon}^{a_{i}}|^{2^{*}} dx = Q_{M} \int_{R^{N}} |W_{\epsilon}^{a_{i}}|^{2^{*}} dx - Q_{M} \int_{R^{N} \setminus \Omega} |W_{\epsilon}^{a_{i}}|^{2^{*}} dx \n+ Q_{M} \int_{\Omega} (|\varphi|^{2^{*}} - 1)|W_{\epsilon}^{a_{i}}|^{2^{*}} dx \n+ \int_{\Omega} (Q(x) - Q(a_{i}))|w_{\epsilon}^{a_{i}}|^{2^{*}} dx \n= Q_{M} \int_{R^{N}} |W_{1}^{0}|^{2^{*}} dx + O(\epsilon^{\frac{N}{2}}) + o(\epsilon) \n= Q_{M} \int_{R^{N}} |W_{1}^{0}|^{2^{*}} dx + o(\epsilon).
$$

Inserting (4.3), (4.5), (4.6) and (4.8) into (4.2), we deduce that for $\epsilon > 0$ small enough

$$
c_i(\lambda, \mu) \leq \frac{1}{N} \Big(\frac{\int_{R^N} |\nabla W_1^0|^2 dx + O(\epsilon^{\frac{N-2}{2}}) - C\epsilon - L(\epsilon)}{(Q_M \int_{R^N} |W_1^0|^{2^*} dx + o(\epsilon))^{\frac{N}{2^*}}} \Big)^{\frac{N}{2}}
$$

$$
\leq \frac{S_0^{\frac{N}{2}}}{N Q_M^{\frac{N-2}{2}}} (1 + O(\epsilon^{\frac{N-2}{2}}) - C\epsilon - CL(\epsilon))^{\frac{N}{2}}
$$

$$
< \frac{S_0^{\frac{N}{2}}}{N Q_M^{\frac{N-2}{2}}}.
$$

LEMMA 4.3: There exist $\lambda_0, \mu_0 > 0$ such that

$$
\overline{c_i}(\lambda,\mu) > \frac{S_0^{\frac{N}{2}}}{NQ_M^{\frac{N-2}{2}}} \quad \text{for all } \lambda \in (0,\lambda_0) \text{ and } \mu \in (0,\mu_0).
$$

Proof: Suppose to the contrary that we could find two positive sequences $\lambda_n \longrightarrow 0$ and $\mu_n \longrightarrow 0$ as $n \longrightarrow \infty$, such that $\overline{c_i}(\lambda_n, \mu_n) \longrightarrow c \leq S_0^{\frac{N}{2}}/NQ_{\frac{N}{2}}^{\frac{N-2}{2}}$ Consequently, there exists $u_n \in \mathcal{O}_i(\lambda_n, \mu_n)$ such that as $n \longrightarrow \infty$,

$$
I_{\lambda_n,\mu_n}(u_n)\longrightarrow c
$$

and

(4.9)
$$
\int_{\Omega} (|\nabla u_n|^2 - \mu_n \frac{|u_n|^2}{|x|^2} - \lambda_n |u_n|^2) dx = \int_{\Omega} Q(x) |u_n|^{2^*} dx.
$$

It then follows easily that $| u_n | \leq C$, and in particular,

$$
\lim_{n \to \infty} \mu_n \int_{\Omega} \frac{|u_n|^2}{|x|^2} dx \le \lim_{n \to \infty} \frac{\mu_n}{\bar{\mu}} \int_{\Omega} |\nabla u_n|^2 dx = 0 \text{ and}
$$

$$
\lim_{n \to \infty} \lambda_n \int_{\Omega} |u_n|^2 dx = 0.
$$

 \overline{a}

From (4.9), and by the Hölder and Sobolev inequalities, we can fix $m_0 > 0$ such that

$$
\int_{\Omega} |\nabla u_n|^2 dx \ge m_0 \quad \text{and} \quad \int_{\Omega} Q(x) |u_n|^{2^*} dx \ge m_0.
$$

Thus, up to a subsequence, we infer that

$$
\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^2 dx = \lim_{n \to \infty} \int_{\Omega} Q(x) |u_n|^{2^*} dx = a > 0.
$$

Furthermore, we deduce

$$
(4.10) \t a \leq Q_M \lim_{n \to \infty} \int_{\Omega} |u_n|^{2^*} dx \leq Q_M S_0^{-\frac{2^*}{2}} \lim_{n \to \infty} \left(\int_{\Omega} |\nabla u_n|^2 dx \right)^{\frac{2^*}{2}}
$$

$$
\leq Q_M S_0^{-\frac{2^*}{2}} a^{\frac{2^*}{2}}.
$$

Thus we get

$$
(4.11) \t\t a \geq S_0^{\frac{N}{2}} / Q_M^{\frac{N-2}{2}}.
$$

On the other hand, we have as $n\longrightarrow\infty$ (4.12)

$$
\frac{1}{N}a = \frac{1}{2} \int_{\Omega} (|\nabla u_n|^2 - \mu_n \frac{|u_n|^2}{|x|^2} - \lambda_n |u_n|^2) dx - \frac{1}{2^*} \int_{\Omega} Q(x) |u_n|^{2^*} dx + o(1)
$$

= $I_{\lambda_n, \mu_n}(u_n) + o(1)$

$$
\leq \frac{S_0^{\frac{N}{2}}}{Q_M^{\frac{N-2}{2}}}.
$$

Hence, from (4.11) and (4.12), we infer $a = S_0^{\frac{N}{2}} / Q_{\frac{N-2}{2}}^{\frac{N-2}{2}}$, and then from (4.10)

$$
\lim_{n\longrightarrow\infty}\int_{\Omega}Q_M|u_n|^{2^*}dx=S_0^{\frac{N}{2}}/Q_M^{\frac{N-2}{2}}.
$$

Therefore,

(4.13)
$$
\lim_{n \to \infty} \int_{\Omega} (Q_M - Q(x)) |u_n|^{2^*} dx = 0.
$$

Set $w_n = u_n/|u_n|_{L^{2^*}(\Omega)}$; then $|w_n|_{L^{2^*}(\Omega)} = 1$, and

$$
\lim_{n \to \infty} \int_{\Omega} |\nabla w_n|^2 dx = \lim_{n \to \infty} \frac{\int_{\Omega} |\nabla u_n|^2 dx}{|u_n|_{L^{2^*}(\Omega)}^2} = S_0.
$$

That is, $\{w_n\}$ is a minimizing sequence for the problem

$$
S_0 := \inf \bigg\{ \int_{\Omega} |\nabla u|^2 dx \bigg\vert \ u \in H_0^1(\Omega) \setminus \{0\}, \int_{\Omega} |u|^{2^*} dx = 1 \bigg\}.
$$

We now use a result of P. L. Lions [12] to conclude that there exists an $x_0 \in \overline{\Omega}$ and a subsequence, still denoted by $\{w_n\}$, such that

 $|\nabla w_n|^2 \rightharpoonup d\tilde{\mu} = S_0 \delta_{x_0}$ weakly in the sense of measure,

and

 $|w_n|^{2^*} \rightharpoonup d\widetilde{\nu} = \delta_{x_0}$ weakly in the sense of measure.

Observe that $g_i(w_n) = g_i(u_n) = r_0/3$; we conclude that

$$
\frac{r_0}{3} = \lim_{n \to \infty} g_i(w_n) = \lim_{n \to \infty} \frac{\int_{\Omega} \psi_i(x) |\nabla w_n|^2 dx}{\int_{\Omega} |\nabla w_n|^2 dx} = \psi_i(x_0),
$$

which implies that $x_0 \notin \{a_i | i = 1, 2, \ldots, k\}$. Therefore, from (4.13), we deduce

$$
Q_M = \lim_{n \to \infty} \int_{\Omega} Q_M |w_n|^{2^*} dx = \lim_{n \to \infty} \int_{\Omega} Q(x) |w_n|^{2^*} dx = Q(x_0),
$$

which is impossible, because that Q is not a constant function.

LEMMA 4.4: For any $u \in \mathcal{N}_i(\lambda,\mu)$ $(1 \leq i \leq k)$, there exists $\rho_u > 0$ and a differentiable function $f: B_{\rho_u}(0) \subset H_0^1(\Omega) \longrightarrow \mathbb{R}$ such that $f(0) = 1$, and for *any* $w \in B_{\rho_u}(0)$, we have $f(w)(u-w) \in \mathcal{N}_i(\lambda, \mu)$. Moreover, for all $v \in H_0^1(\Omega)$,

$$
\langle f'(0), v \rangle = \frac{2 \int_{\Omega} (\nabla u \cdot \nabla v - \mu \frac{uv}{|x|^2} - \lambda uv) dx - 2^* \int_{\Omega} Q(x) |u|^{2^*-2} uv dx}{\int_{\Omega} (|\nabla u|^2 - \mu \frac{|u|^2}{|x|^2} - \lambda |u|^2) dx - (2^*-1) \int_{\Omega} Q(x) |u|^{2^*} dx}.
$$

Proof: Let $u \in \mathcal{N}_i(\lambda, \mu)$ and $G: \mathbb{R}^+ \times H_0^1(\Omega) \longrightarrow \mathbb{R}$ be the function defined by

$$
G(t, w) = t \int_{\Omega} (|\nabla(u-w)|^2 - \mu \frac{|u-w|^2}{|x|^2} - \lambda |u-w|^2) dx - t^{2^*-1} \int_{\Omega} Q(x) |u-w|^{2^*} dx.
$$

Then $G(1,0) = 0$ and

$$
G_t(1,0) = \int_{\Omega} \left(|\nabla u|^2 - \mu \frac{|u|^2}{|x|^2} - \lambda |u|^2 \right) dx - (2^* - 1) \int_{\Omega} Q(x) |u|^{2^*} dx
$$

= (2 - 2^*) $\int_{\Omega} Q(x) |u|^{2^*} dx$
 $\neq 0.$

Hence, by the implicit function theorem, we infer that there exists $\rho_u > 0$ small enough and a differentiable function $f: B_{\rho_u}(0) \subset H_0^1(\Omega) \longrightarrow \mathbb{R}$ such that $f(0) = 1$ and $G(f(w), w) = 0$ for all $w \in B_{\rho_u}(0)$. It is easy to verify from $G(f(w), w) = 0$ that $f(w)(u - w) \in \mathcal{N}_i(\lambda, \mu)$ and

$$
\langle f'(0), v \rangle = -\frac{\langle G_w(1,0), v \rangle}{G_t(1,0)}
$$

=
$$
\frac{2 \int_{\Omega} (\nabla u \cdot \nabla v - \mu \frac{uv}{|x|^2} - \lambda uv) dx - 2^* \int_{\Omega} Q(x) |u|^{2^*-2} uv dx}{\int_{\Omega} (|\nabla u|^2 - \mu \frac{|u|^2}{|x|^2} - \lambda |u|^2) dx - (2^*-1) \int_{\Omega} Q(x) |u|^{2^*} dx}.
$$

Proof of Theorem 1.3: From Lemmas 4.2 and 4.3, we conclude that

$$
(4.14) \qquad c_i(\lambda,\mu) < \overline{c_i}(\lambda,\mu) \ (1 \leq i \leq k) \quad \text{for all } \lambda \in (0,\lambda_0) \text{ and } \mu \in (0,\mu_0).
$$

It then follows that

$$
c_i(\lambda,\mu)=\inf\{I_{\lambda,\mu}(u)|\ u\in (\mathcal{N}_i(\lambda,\mu)\cup \mathcal{O}_i(\lambda,\mu))\}.
$$

Let ${u_n^i} \subset (\mathcal{N}_i(\lambda,\mu) \cup \mathcal{O}_i(\lambda,\mu))$ be a minimizing sequence for $c_i(\lambda,\mu)$. By replacing u_n^i with $|u_n^i|$, if necessary, we may assume that $u_n^i \geq 0$. By Ekeland's variational principle [7], there exists a subsequence, still denoted by $\{u_n^i\}$, such that

$$
I_{\lambda,\mu}(u_n^i) \leq c_i(\lambda,\mu) + \frac{1}{n},
$$

and

$$
I_{\lambda,\mu}(w) \geq I_{\lambda,\mu}(u_n^i) - \frac{1}{n} |w - u_n^i| \quad \text{ for all } w \in (\mathcal{N}_i(\lambda,\mu) \cup \mathcal{O}_i(\lambda,\mu)).
$$

From (4.14), we may assume that $u_n^i \in \mathcal{N}_i(\lambda, \mu)$ for sufficiently large n. Set $v_{\rho} = \rho v$ with $|v| = 1$ and $0 < \rho < \rho_{u_n}$; then $v_{\rho} \in B_{\rho_{u_n} (0)}$, and from Lemma 4.4, $w_{\rho} = f_{u_n^i}(v_{\rho})(u_n^i - v_{\rho}) \in \mathcal{N}_i(\lambda, \mu)$, where $\rho_{u_n^i}, f_{u_n^i}$ are from Lemma 4.4. Observe that $f_{u_n^i}(v_\rho) \longrightarrow f_{u_n^i}(1) = 1$ as $\rho \longrightarrow 0$, and by a Taylor expansion, we obtain

$$
\frac{1}{n} | w_{\rho} - u_n^i | \geq I_{\lambda,\mu}(u_n^i) - I_{\lambda,\mu}(w_{\rho})
$$
\n
$$
= \langle dI_{\lambda,\mu}(u_n^i), u_n^i - w_{\rho} \rangle + o(|u_n^i - w_{\rho}|)
$$
\n
$$
= \rho f_{u_n^i}(\rho v) \langle dI_{\lambda,\mu}(u_n^i), v \rangle + (1 - f_{u_n^i}(\rho v)) \langle dI_{\lambda,\mu}(u_n^i), u_n^i \rangle
$$
\n
$$
+ o(|u_n^i - w_{\rho}|)
$$
\n
$$
= \rho f_{u_n^i}(\rho v) \langle dI_{\lambda,\mu}(u_n^i), v \rangle + o(|u_n^i - w_{\rho}|).
$$

Hence, we conclude that

$$
\begin{split} |\langle dI_{\lambda,\mu}(u_n^i), v \rangle| &\leq \frac{|\;w_\rho - u_n^i| \; (\frac{1}{n} + |o(1)|)}{\rho |f_{u_n^i}(\rho v)|} \\ &\leq \frac{|\;u_n^i(f_{u_n^i}(\rho v) - f_{u_n^i}(0)) - \rho v f_{u_n^i}(\rho v)| \; (\frac{1}{n} + |o(1)|)}{\rho |f_{u_n^i}(\rho v)|} \\ &\leq \frac{|\;u_n^i| \; |\;f_{u_n^i}(\rho v) - f_{u_n^i}(0)| \; + \rho | \;v| \; |f_{u_n^i}(\rho v)|}{\rho |f_{u_n^i}(\rho v)|} \Big(\frac{1}{n} + |o(1)|\Big) \\ &\leq C(1 + |\;f_{u_n^i}^i(0)| \;)\Big(\frac{1}{n} + |o(1)|\Big). \end{split}
$$

Therefore, we deduce that $dI_{\lambda,\mu}(u_n^i) \longrightarrow 0$ as $n \longrightarrow \infty$. Hence $\{u_n^i\}$ is a Palais-Smale sequence for $I_{\lambda,\mu}$ at the level $c_i(\lambda,\mu)$. Since $c_i(\lambda,\mu) < S_0^{\frac{N}{2}}/NQ_M^{\frac{N-2}{2}} = c^*$ in Case II, from Lemma 2.1, we infer that there is a subsequence of ${u_n^i}$, still denoted by $\{u_n^i\}$, and a function $u^i \in H_0^1(\Omega)$, such that

$$
u_n^i \longrightarrow u^i \quad (1 \le i \le k) \quad \text{strongly in } H_0^1(\Omega),
$$

and then $u^i \geq 0$ ($1 \leq i \leq k$). By the strongly maximum principle, we obtain $u^i > 0$ $(1 \leq i \leq k)$ in Ω . Since $g_i(u^i) \in B_{\frac{r_0}{3}(a_i)},$ and $B_{\frac{r_0}{3}(a_i)}$ are disjoint for $i = 1, 2, \ldots, k$, we conclude from Lemma 4.1 that $u^{i}(1 \leq i \leq k)$ are distinct positive solutions of (1.1) .

ACKNOWLEDGEMENT: The author would like to thank Professor Daomin Cao for helpful discussions during the preparation for this paper.

References

- [1] J. P. Garcia Azorero and I. Peral Alonso, *Hardy inequalities* and some *critical elliptic* and *parabolic problems,* Journal of Differential Equations 144 (1998), 441-476.
- [2] H. Brezis and L. Nirenberg, *Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent,* Communications on Pure and Applied Mathematics 36 (1983), 437-478.
- [3] D. Cao and P. Han, *Solutions for semilinear elliptic equations with critical exponents and Hardy potential, Journal of Differential Equations 205 (2004), 521–537.*
- [4] D. Cao and S. Peng, *A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms,* Journal of Differential Equations 193 (2003), *424-434.*
- [5] K. S. Chou and C. W. Chu, On *the* best *constant for a weighted Sobolev-Hardy inequality,* Journal of the London Mathematical Society 48 (1993), 137-151.
- [6] E. Egnell, *Elliptic boundary value problems with singular coefficients and critical nonlinearities,* Indiana University Mathematics Journal 88 (1989), 235-251.
- [7] I. Ekeland, *On the variational principle,* Journal of Mathematical Analysis and Applications 17 (1974), 324-353.
- [8] I. Ekeland and N. Ghoussoub, *Selected new aspects of* the *calculus of variations in* the large, Bulletin of the American Mathematical Society 39 (2002), 207-265.
- [9] A. Ferrero and F. Gazzola, *Existence of solutions for singular critical growth semilinear elliptic equations,* Journal of Differential Equations 177 (2001), 494- 522.
- [10] N. Ghoussoub and C. Yuan, *Multiple solutions for quasilinear PDEs involving critical Sobolev and Hardy exponents,* Transactions of the American Mathematical Society 352 (2000), 5703-5743.
- [11] E. Jannelli, *The role played by* space *dimension in elliptic critical problems,* Journal of Differential Equations 156 (1999), 407-426.
- [12] P. L. Lions, *The concentration-compactness principle in* the *calculus of variations: the limit* case, Revista Matem~tica Iberoamericana 1 (1985), 145-201; 45-121.
- [13] P. Rabinowitz, *Minimax methods in critical points theory with applications to differential equations,* CBMS series, no. 65, Providence, RI, 1986.
- [14] D. Ruiz and M. Willem, *Elliptic problems with critical exponents and Hardy potentials,* Journal of Differential Equations 190 (2003), 524-538.
- [15] S. Terracini, On positive solutions to a class equations with a singular coefficient *and critical exponent,* Advances in Differential Equations 2 (1996), 241-264.
- [16] M. Willem, *Minimax Theorems*, Birkhäuser, Boston, 1996.