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ABSTRACT 

(N--2)2 and let ~ C RN(N ~ 4) be a smooth Assume 0 ~ # ~ ~ = ~- 

bounded domain, 0 E ~t. We study the semilinear elliptic problem: 

--Au -- #l~-~i = AU + Q(x)lui2*-2u, u E H~(~). By inves t iga t ing  the  

effect of  t he  coefficient Q, we es tab l i sh  the  exis tence of nontr iv ia l  solu- 

t ions  for any  A ~ 0 and  mul t ip le  posi t ive so lu t ions  wi th  A, # > 0 small .  

1. Introduction and main results 

Let ~ C -RN(N >_ 4) be an open bounded domain with smooth boundary 012, 

2N We are concerned with the following semilinear elliptic N--2" 0 E ~, 2* = - -  
problem, 

~ = Au+Q(x ) iu i2* -2u  in ~t, (1.1) - A u  - # ~  
u = 0 on 0n,  

where Q(x)  is a positive bounded function on ~, A > 0 and 0 ~ # < p = (N~___~2)2. 

u E H~(12) is said to be a weak solution of problem (1.1) if u satisfies 

s uv 
(1.2) (Vu.  Vv - # ~  - Auv - Q(x) lu l2*-:uv)dx  = 0 Vv E H~)(gt). 

It is well known that  the nontrivial solutions of problem (1.1) are equivalent 

to the nonzero critical points of the energy functional 

1 ~  2 u2 2 1 ~  
(1.3) I~,,(u) = ~ (]Vu] - # ~ - - ~ - A u  )dx--~7 Q(x)[u[2*dx, u E H(~(a). 
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In recent years, much attention has been paid to the existence of nontrivial 

solutions of problem (1.1) (see [2, 3, 4, 8, 10, 11, 14]). Let at` denote the 

spectrum of the operator - A  - _e_ 0 I~F ( -< # < #) with zero Dirichlet boundary 

condition. In view of [6, 9], at`(0 _< p < #) is discrete, contained in the positive 

semi-axis and each eigenvalue At`,i(i = 1, 2 , . . . )  is isolated and has finite multi- 

plicity, the smallest eigenvalue/~t`,l being simple and At`,i > cc as i ) co; 

moreover, each L2-normalized eigenfunction et`,i corresponding to At`,i �9 at`, 

belongs to the space H I (gt). 

The functional I �9 CI (X ,R)  is said to satisfy the (P.S.)c condition if any 

sequence {Un} C X such that as n ----* oc 

I(un) ~ c, dI(un) ~ 0 strongly in X* 

contains a subsequence converging in X to a critical point of I. In this paper, 

we will take I = I~,t` and X = Ho 1 (~t). 
Set DI'2(RN) = {u �9 L2*(RN)] 

# = ( _ ~ ) 2 ,  we define the constant 

[Vu[ e L2(RN)}. For all # �9 [0,/~), 

u 2 

fRN ([Vu]2 - #-[-5-ff)dx 
St` := inf 

ueDI':(RN)\{ o) ( fan  [u[2*dx) ~ 

From [9, 11], St` is independent of any ~ C R N in the sense that if 

u 2 

f (IVul = - #-~-~)dx 
St`(fl) := inf 

ueHa(~)\(O) (f~ lu[2*dx)~ ' 

then St`(gt) = St`(R N) = St,. 
Let 7 = v ~  + ~x/~--fi, 7' = vffi - ~ ,  S. Terracini [15] proved that for 

e > O ,  

(1.4) 

satisfies 

Ut`,E(x) = (4e2N(# - #) / (N  - 2)) ~ 2  
.2/._ 

f - A u -  # ~  = {u[2*-2u in RN\{0},  
(1.5) 

[ u , 0  as[xJ  oo. 

From Theorem B in [5], all the positive solutions of problem (1.5) must have 

the form of Ut`,~. Moreover, Ut`,~ achieves St`. 
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By the Hardy inequality (see [1]) 

u 2 1 

we easily derive that  the norm (fn(]Vul 2 -p-f~7)dx)~ (0 < p < #) is equivalent 

to the usual norm in H(~ (~). 

In a recent paper, D. Cao and P. Han [3] considered a special case of problem 

(1.1) (i.e. Q(x) - const; without loss of generality, assume Q(x) - 1). Namely, 

for 

- A n  -- ]s = Au q-]U]2*--2U in f~, (1.6) 
[ u = 0 on 0f~, 

they proved that: Assume that 0 _< p <: (N2----~2)2 -- ( ~ 2 ) 2 ,  then for all 

A > O, problem (1.6) admits a nontrivial solution with critical level in the range 
N 

(0, 1 )" 
When Q(x) ~ const, the analysis of Palais-Smale sequences becomes com- 

plicated, which results in much difficulty. It is natural to ask whether problem 

(1.1) admits one solution for any A > O. In the present note, we not only give a 

positive answer, but also prove the multiplicity of positive solutions for A, # > 0 

small. 

In this paper, we suppose that  Q(x) is a positive bounded function on fh 

Moreover, 

(Hi) Q(x) = Q(0) + O(tx] 2) as x -* 0. 

(//2) There exist points a l , a 2 , . . . ,  ak E gt\{0} such that  Q(ai) are strict local 

maxima satisfying 

Q(a~) = QM = m_axQ(x) > O, 
f~ 

and 

Q(x) = Q(ai) + o(Ix - a~] 2) as x --* a~, 1 < i < k. 

In order to state our main results, we need to distinguish two cases: 

CASE I: Q(O) > QM(so)S_~ N-~-2; 

CASE II: Q(0) < ,~1vl ~ So J �9 

N+2 2 THEOREM 1.1: In Case I. Assume that 0 < # < # -  ( - N - )  (N >_ 5) and (H1) 

holds. Then, for all A > 0 problem (1.1) admits a nontrivial solution u such 
--~ N- -2  

that I~,~(u) E (0, S~ / N Q ( O ) ~ - ) .  
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THEOREM 1.2: In Case II. Let N >_ 5, 0 <_ # < # and (H2) hold. Then, 

for all A > 0 problem (1.1) has at least one solution v such that I~,~,(v) E 
N N--2 

(0, S [ / N Q ~ -  ). 

Furthermore, by analyzing the effect of the coefficient Q(x), we obtain the 

multiplicity of positive solutions of (1.1) for A, # > 0 small. 

THEOREM 1.3: In Case II. Suppose N >_ 4 and (H1) - (H2) hold. Then there 

exist #0 > 0, A0 > 0 such that for # C (0, #0), problem (1.1) admits at /east  k 

positive solutions with all A C (0, Ao). 

We prove Theorems 1.1, 1.2 and 1.3 by critical point theory. However, the 

functional I~,~ does not satisfy the Palais-Smale ((P.S.) in short) condition due 

to the lack of compactness of the embeddings: H~ (f~) ~ L 2. (f/) and H l(f~) 

L2(f~, Ix[-2). So the standard variational argument is not applicable directly; 

we need to analyze the effect of the coefficient Q and the energy range where 

I~,~ satisfies the Palais-Smale condition. We prove the existence of nontrivial 

solutions for any A > 0 and multiple positive solutions of problem (1.1) with 

A > 0, # > 0 small by the linking theorem and mountain pass lemma (see 

[13, 16]). 
2 1 Throughout this paper, we denote the norm of H01 (f~) by I ul = (f~ IVul dx) ~, 

the norm of Lt(f~)(1 _< l < co) by I ul LZ(n) = (fa lultdx) } and positive constants 

(possibly different) by C, C1, C2,. . . .  

2. P r o o f  o f  T h e o r e m  1.1 

In this section, we first introduce some preliminary lemmas. 

LEMMA 2.1: Let 0 _< # < #. Then for every A > O, I~,~ satisfies the (P.S.)c 

condition with c < c*, where 

c* = min 

N N 

N Q ( O ) -~-~" N Q -~-  

Proof: Assume that {Un} C HI (~)  satisfies, as n , co, 

I~,~(Un) ~ c < c*, dI~,o(un) ,0  strongly in H-I(gl) .  

By the Hardy inequality, we easily get [ u,~[ -< C. Therefore, up to a sub- 
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sequence, we may assume that 

Un ~ u weakly in H(~(gt); 

Un ~ u weakly in L2(f~, Ixl-2dx); 

un ~ u weakly in L 2. (fl); 

un ~ u strongly in L2(ft); 

U n  ) U a . e .  o n  ~ .  

It is easy to verify that  u E H~(gt) is a weak solution of problem (1.1). 

Hence, by the concentration compactness principle [12], there exists a sub- 

sequence, still denoted by {Un}, at most countable set J ,  a set of different points 

{xj}je,.7, and {~'j}jesu{0}, {Kj}jeJu{0} C [0, oc) such that 

Iw,~l 2 -~ d~ > I w ?  + ~ ~ ,  + ~ o ,  
j~J 

lu.I 2. - -  d~ = lu[ 2. + E Kjsx~ + Ko(~o, 
j~,7 

lunl ~ I~? + ~ o ,  
ixl--- 7 -~ d~ = ~-F 

2 

So6 ~ < E  f o r j c J ,  

S.~o ~- _< ~ - ~ .  

We claim that J is finite and that for any j E fl,  either Kj = 0 or 

N N - - 2  

Q(x3) 6 >_ S j  /Q-~ - .  

In fact, let e > 0 be small enough such that 0 ~ B~(xj)(j  E ,_7"). Let r be a 

smooth cut off function centered at xj satisfying 

0_<r  j < l , c j ( x ) = { 1 0  if I x -  xjl < ~, and IV~l < 4 - - .  

if I x - x j l  >__ e, - e 

Observe that  

: s + s UnVUnVCJdx- . 
(2.1) 

- A /n  ]u,~[2CJdx- faQ(x)'u,~[2*CJdx, 

(2.2) lL% s lVu,,l~dx= s O~d~ > s lVul~O'dx + .% 
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(2.3) 

(2.4) 

lim f~ Q(x)lunl2*CJdx -- f~ Q(x)CJd'~ = fn Q(x)[u[2*CJdx + Q(xj)~j, 

lim lim f Un V Un V OJ dx 
~---+0 n--+ OO Yn 

~il~ n]inloo ((/" 'V'n'2dx) �89 ( /fl "nI2'V~'2dx) �89 
(s )~ < C lim ]ul2lvcJl2dx 

- -  ~ -"+0 

(I. )" _< C lim lul2*dx 
e--*o ~(z3) 

~0~ 

and 

f~ tunl2~J lim lim f lUnl2~dx:O. (2.5) lim lim ~ ax = 0, 
~----+0 n----*(X) IX[ ~ ~--40 n---+(X) J ~  

Inserting (2.2)-(2.5) into (2.1), we deduce 

(2.6) 0 = lim lim (dIs ~ ~ - Q(xj)~j. 
~'--+0 n - - * o o  

2 
Since Souj ~ < "fij for j 6 J ,  together with (2.6), we infer that  Yj = 0 or 

N N - - 2  

Q(xj)~ > S~-/Q~ , which implies that  J is finite. 

Now we consider the possibility of concentration at the origin. Let e > 0 be 

small enough such that  xj r B~(O)(j E fl). Let r be a smooth cut off function 

centered at 0 satisfying 

0 <_ r 1,r  = 0 

Then we have 

if Ix[_<~, a n d l V r  4 
i f l x l > e ,  - e" 

n ...-* o o  

u2r 
IXL  
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lira lira f unVunVCdx = 0, 
5 ---~ 0 n ----> Oo Jn 

liin lira f [un[2r = O. 
C---+0 n---*cx) J~,~ 

Hence, we conclude that 

(2.7) 0 = lim lim (dI~,~(un), unr _> p'o - # ~  - Q(0)~0. 
(~--* 0 n --+ OO 

2 

Since S ~ o  ~ _< ~-~ - #~'0, together with (2.7), we get 
2 

S.,o  _< Q(0) 0, 
sj_  

which implies that ~0 = 0 or Uo _> (Q(O)) ' 

From the above arguments, we conclude 

1 
C ---- I A , . ( U n )  --  - ~ ( d I A , . ( ? . t n ) , ? t n >  -}- o(1) 

1s 
= ~ Q(x)lunl2*dx+~ 

i ( f  a E ) = -~ Q(x)[ul2*dx + Q(xj)@ + Q(O)~o . 
j c j  

If there is a j c J U {0} such that ~j ~ 0, then we infer that  
N N 

c > min . . 2  = 
- N Q ( O ) - ~ ' N Q - ~ -  e*, 

which contradicts the assumption on c. 

Hence, up to a subsequence, we derive that un ) u strongly in H~(ft). 
| 

Denote by B~(y) the ball of radius r centered at the point y E ft; we have 

B ~  (y) C ft for rn large enough. For 0 _< # < #, let 

H -  = span{et , ,1,e , ,2, . . . ,e , ,k} ,  H + = ( H - )  • 

Fix k, define the approximating eigenfunctions e,m,i = ~met~,i(i = 1, 2 , . . . )  and 

the space 
m U~ = span{euml, %~,2, . . . , eu,k}, 

where 
{ ~  if x E B~(0) ,  

~m(X) = I x ] -  1 i f x  E B~(0) \B~_(0) ,  
if x e f~ \B~ (0). 

We have the following error estimates, which can be found in [3]: 
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LEMMA 2.2: Let 0 < # </2. Then 
m (i) 1%,~ - %,~1 , 0  as m ~ or 

(ii) max{~eH~, I ~,1 ~2(~)=1} [ ul 2 <_ Au,k + Cm-2~4-Y~-~. 

For any m > 0, e > 0, we define 

(4e2N(p_tt)/(N_2)) N42 
(2.8) ucm(x) = Uu'e(x)- :& 

0 

Isr. J. Math .  

if x �9 B ~  (0), 

if x �9 ~ t \B~  (0). 

The following estimates hold (see [9]): For any 0 <_ # </2, 

(2.9) 

(2.10) 

fl ( iVu? l  _ #(um)2~d x N_ [X12 ] 5 S]~ + cIs 2x/#-tt, 

Set 

where 

c~ = inf max I~,~(h(u)), 
h~F~,m uEQ~,m 

F~,m = {h E C(Q~,,~,H~(~))I h(u) = u, Vu �9 OQ~,m} 

and 

q~,m = (BR(O) n H~)  �9 {ru~l 0 < r < R}. 

Then we have the following: 

LEMMA 2.3: Let the assumption (H 0 hold and tt E [0,/2 - (y_~_)2). Then for 
N-2 

any A > O, c~ < S~ / Y q ( O ) - ~ .  

Proof: Without loss of generality, we may assume that there exists an integer 

k such that A~,k _< A < Au,k+l. Let max~Q~,,~ I~,~(u) = I~,u(w'~ + tt,~,~u~), 
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where w~  E H m. By (ii) of Lemma 2.2, we get 

(2.11) 

1 (w~) 2 A(w.~)2)dx l~Q(x),wr~12.dx 

- 2 (w'~)2dx + Cm-2V~Z=-~ (w'~)2dx - ~ n~n Q(x) 

f IwYl2"dx 

1 <- max( Cm-2 ~v~-~t2 - 2-- min Q(x)t 2" ) 
t_>o 

~_Cm-N Pvr~-:-fi-~. 

On the other hand, as in [9], choose E = m-~-+~ vrh-~. 

(2.9) and (2.10) become respectively 

Thus as m > (:X:), 

ixi2 ] ~_ S~ -}- C1 m-N~/#-', 
] ~  N N2 _ 

(2.13) ]u~i2"dx > $ 7  - C2m - ~ - ~  ~/~=~-'. 

From (2.13) and the assumption of (H1), we easily deduce that for m large 

enough 

(2.14) 
. N2 - Q(x)lumI 2 dx > Q(o)s~ - C3m -~-2 p~ffi=-fi-~. 

Furthermore, 

(2.15) ~ luml2dx > Cam -(N+2). 

Observe that  id e F~,m and [suppw~ N suppum[ --- 0. From (2.11), (2.12), 
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(2.14) and (2.15), we conclude that  

c~ < max Ix,.(u) 

m m m =Ix, . (w.  + t.,~u~ ) 

=5,.(wy) + Ix,At.~j2) 

-<cm-N ~=-~-" + - - 5 - -  IW?I: - .  ixl~ 

(tm W 
' . , e l  m 
2* O(x)lu~ flax 

(2.16) m 2 
(t,,r ~ Clm_N p,/-~_~ ~C4m_(N+2) ) <Cm - N ~  q- ------~(S. + 

1V N2 m 2" --N-2"/~--fi) 

1 ~ Clm_N ~v/-fi:-fi_ ~ ~C4m_(N+2)) <_era - N ~  + - ~ ( S .  + 

N 

• ( s f  +c1.~ - N , / ~ :  ~c4m-(N+~)h'~ ~ 
N - - - -  N2 ~ ] ' 

O , ( o ) s #  - c 3 . ~ -  ~=~ ~"-" 
where we use the following fact: 

( ~ A  1 / A ~  ~- max - B --- A ,B > 0. 
t_>0 B ' 

N 2 Note that  0 < # < p - (U_~_____~2)2 and then N + 2 < N v ~  - p < N-2~-~ x/# - #. 

Hence, for m large enough, we deduce from (2.16) that  
N N 

Ce < S~-2" C m  - N  ~'flfi~@ S f f  NQ(O) ~'f~ + - C h m - ( N + 2 )  < lV~2 . | 
- - NQ(O) 

Proof of Theorem I.i: From [9], for ra, R large enough Ix,.  satisfies all the 

assumptions of the linking theorem [I3] except for the (P.S.)c condition, i.e., 

(i) There exist ao,Po > 0 such that  

Ix,.(u) > ao Vu �9 OBpo(O ) ~ H +. 

(ii) There exists R0 > P0 such that  

Ix,.IOQ~.,. <_ w(m) with w(m) ~ 0 as m ~ o0. 

Moreover, OBpo (0) N H + and OQ~,m link (cf. [13]). Then we obtain a Palais- 

Smale sequence {un} for Ix, .  at level ce; moreover, 

Cr >_ infueOBpo(o)nH+ Ix,.(u) k a0 > 0 
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(see Theorem 2.12 in [16]). By Lemma 2.1 and Lemma 2.3, we infer that there 

is a subsequence of {Un}, still denoted by {u~}, and a function u �9 H 1 (f~), such 

that 

Un ~ u strongly in H~ (f~), 

and then c~ is a critical value of I~,t* and u is a nontrivial solution of problem 

(1.:). , 

3. P r o o f  of  T heorem 1.2 

In this section, we consider Case II: Q(0) < o.-~s-~x~-2 Observe that  St, < So; 
"~  lvl  k SO ] " 

we easily infer that a/ ~ 0 (1 < i < k), where as E 12 satisfies Q(ai) = QM -~ 

maxuQ(x) .  So B_~(ai) C ~t for m large enough�9 Set 

H o = span{co,:,  e0,2,. . . ,  e0,k}, g + = ( g o )  • 

where e0,i (i = 1, 2 , . . . )  are the eigenfunctions et*,i for It = 0 in section 1. 

Fix k; define the space 

�9 O,k}, Ho,,m -'~ span{e~, l ,  emo,2, �9 �9 em 

where e~,j = (meo,j (j = 1,2, �9 �9 

(re(x)  = Ix - a ~ l -  1 

For any m > 0, e > 0, we define 

if x E B ~  (ai), 
if x e B ~ (ai)\B_~ (ai), 
if x e f~ \B~ (ai). 

m x {Uo,~(x-ai) 
%~ )= 0 

N - - 2  

(e2N(N--2)) 4 if x E B ~  (a/), (~+(~)~)r 
if x e f i \ B ~  (ai). 

The following estimates hold: 

(3.1) 

(3.2) 

N IVv~a,l~dx ~ Sj + c~N-2m N-2, 

~ lv~,=,12*dx > So --CcNmN�9 

In fact, choosing # -- 0 in (2.9) and (2.10) respectively, we get (3.1) and (3.2) 

immediately�9 

Set 

* =  inf max I~,u(h(u)) ,  c~ hcr* ,~ ucQ';,,= 



370 P. HAN Isr. J. Math. 

where 

and 

* * 1 * F~, m = {h �9 C(Q~,m,Ho(a))l h(u) = u, Vu �9 OQ~,m} 

Q*e,m = (Bn(ai) n H~,m) �9 {rvZ.,J, 0 < r < R}. 

Then we have the following: 

LEMMA 3.1: Assume that N >_ 5, # _> 0 and the assumption of (H2) holds. 
N N--2 

Then for any A > O, c* < S ~  / N Q ~  

Proof: As in the proof of Lemma 2.3, we suppose Ao,k _< A < AO,k+l for some 

integer k. Let max~,eQ;,,, I~,,(u) = I~,~(w~ + t0m~vr where w~  �9 H~, m. By 

(ii) of Lemma 2.2 (the case: # = 0), we derive 

(3.3) 

I m,,0(x> - 2 (w~)2dx + Cm-(Y-2)  (w~) 2 d x -  ~7 a 

2* <Cm_(N_2) I w r  I ~:,(a) 1 m_inO(x) I w r  [ i~*(~) 
- 2 *  

1 2* <_ max(Cm-(N-2)t 2 -- ~-; m'_m Q(x)t ) 
t>o 

N(N-2) 
~ C T n -  2 

On the other hand, choosing # = 0 in (2.12), (2.13), and e = m -(N+2)/2, we 

get as m ----* cc 

/~_~ N___ N(N--2) 
(3.4) IVve, m,]2dz < S~ + e r a -  2 , 

farm ~ N' (3.5) I ~,a~l 2*dx >- So - C m  2 

From the assumption of (H2), and after a direct calculation, we get 

/~ N2 
(3.6) Q(x)lv~,  [:'dx >_ Q(a~)S o - C m  

In addition, 

(3.7) f I v ~  [2dx > Cm -(N+2). 
Yn 
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Observe that  id 6 F*,m and [suppw~ A suppv~,m~ [ = O. We deduce from 

(3.3)-(3.7) that  

* < m a x  & , , ( u )  Ce __ u6Q~,m 

m m tm vm 
=/A, t t (w0 " 0,e e,a~) 

- I [ , m  v m =/A,tt(~/2~ n) -1- A,/~J'O,e e,a,] 
[t m ~2 ~ 

N ( N - - 2 )  k 0 , e ]  m 2 
< C m  , + - - 5 -  (IVv~,o,I  - A(vY,~,)2)dx 

m 2* (t0,~) ~ ,,, ~. 
2" O(*)l%~,l dx 

m 2 
_ N(N-~) (to,e) _~ N(,+-~) 

<_Urn- , + ~ ( S  o + Cm , - ACm -(N+2)) 

+m ~2" 
~O,e] N N 2 

-~ (Q(a~)S~ - C m - T )  

 (So < C m -  " + + Cm 2 - -  ACm-(N+2)) 

X 

IV N ( N - - 2 )  
( S ~  -}-Cm ~ -- )%Cm--(N+2))N~ 2 

N N 2  , 

Q ( a i ) S [  - c m  , 

Note that  for N > 5, N + 2  < N ( N - 2 ) / 2  < N2/2. Hence, for m l a r g e  

enough, we derive that  

N N 

NQ(ai)~_ 2 + C m - - - - T - -  - e r a  -(N+21 < NQ(ai) ~ 2 .  | 

Proof of Theorem 1.2: From [9], for m, R large enough I~,~ satisfies all the 

assumptions of the linking theorem [13]. Namely, 

(i) There exist a, p > 0 such that  

I~,,(v) >_ o~ Vv E aBp(ai) N Ho +. 

(ii) There exists R > p such that  

I~,,IoQ. m < p(m) with p(m) , 0 as m > oc. 

Moreover, OBp(ai) N H + and OQ*m link (cf. [13]). Then we obtain a 

Palais-Sma/e sequence {Vn} for Ix, ,  at level c~, moreover, 

c~ >_ infv6OB.(ai)nH+ IA,t~(V) _> a > 0 
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(see Theorem 2.12 in [16]). By Lemma 2.1 and Lemma 3.1, up to a 

subsequence, we may assume that  

v~ ~ v strongly in Hl(f t ) ,  

and then c* is a critical value of I~,~ and v is a solution of problem (1.1). 

I 

4. P r o o f  of  T h e o r e m  1.3 

In this section, we first give some preliminary notation and useful lemmas. 

Choosing r0 > 0 small enough such that  0 ~ Bro(a/), Bro(ai ) C f~ and 

B~o(ai ) ~ B~o(aj) =- @ for i 5s i,j -= 1 , 2 , . . . , k .  

Define 

f~ r 
gi(u)= f~iVul2d x , ~i(x)=min{1,1x-ail},  l < i < k .  

Then we have the following separation result. 

LEMMA 4.1: Ifgi(u) <_ r0/3 and gj(u) < ro/3 for u �9 Hl(gt)\{0}, then i -- j .  

Proof." For any u �9 H0i(ft)\{0} satisfying g~(u) <_ ro/3 (1 < i < k), we have 

r~ falVul2dx> far fa r 
3 - - \S~o(~) 

>_ ro / IVul2dx, 
Jn \s~ o (ai) 

which implies that  

(41) [ Lvul dx > 3 [  IVul   , 1 < i < k 
Jn Jn \B~ o (a~) 

Hence, from (4.1), we obtain 

2 /~ ]Vul2dx >-- 3(  /a\B,o(a,) lVu'2dx T /~\B~o(aj) 'Vul2dx ) 

> 3/nlVul2dx i f i r  

which is a contradiction, l 

Set 
N'(A, #) = {u �9 H~(a)\{0}l <dI~,u(u),u) = 0}, 

Af/(A, #) = {u �9 Af(A,#) 1 gi(u) < r0/3}, 
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and 

Define 

o , ( ~ , , )  = { ,  �9 H ( ~ , , ) I  g , ( u )  = ~ 0 / 3 } .  

ci(A,#) := inf I;~,.(u) and G ( A , # ) : =  inf Ia, ,(u),  
~Ar~(~,t,) ueo~(~,~) 

i = 1 , 2 , . . . , k .  

Then we have 
N N - - 2  

LEMMA 4.2: ci(A,#) < S ~ / N Q ~  

Proof: Let p > 0 be small enough such that 0 r Bp(ai) for i = 1, 2 , . . . ,  k, and 

Bp(ai) C ft. Set w~(x) = ~(x)W~(x),  where 

( N ( N -  2)e)~-= { ~  if I x -  ail <_ ~2, 
N-= and 0 < ~ < 1, ~(x) = if Ix - a i l  > P. wa~(x) = (~ + Ix - a~l 2) ' - - - 

al ai  Then we have t~ w~ �9 Af(A,#), where 

= IJ ' 

Furthermore, 

f~ I w ~  ~ (x)l~dx 

fa:=,  JV(~(ai + ey)W~ 

, r  a s e  , 0 .  

a~ ~ ro/3, w h i c h  Hence, there exists eo > 0 such that for any e �9 (0, co), g~(t~ w~ ) < 
ai ai  implies t~ w~ �9 Afi(A,#), 1 < i < k. Therefore, we get 

ai al  ci(k, tt) < I:~,.(t~ w~ ) = maxI~,u(tw~') 
t>_o 

(4.2) a ,  2 ' w ~ i '  2 ai  

\ (f~Q(x)[w~'12"dz)~ 

From [2], we know that the following estimates hold: 

(4.3) ./o ]Vwa~']2dx : ./.N IVW~ + O(e-~-~)' 

i. " = + O ( ~ ) ,  
N 

(4.5) Iw2'12dx = L(e) = Ce + O(e---w) if N > 5, 
Ce Iloge[+O(e) if N = 4 ,  
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To proceed further, we need to estimate the two terms in (4.2): 

(4.6) 

s b~,l: . - ~ a x  and ~ Q(x)lw~']2*dx. 

i-~D2dx _> C ( ~  ~(o,) IxlU(~ + I x -  ail2) N-2 

~-2 /B dy 
_>C~-T ~(o) ly+~12(~+lyl2) N-2 

>- Ce-~ /B dy 
,~(o) (lY] 2 + lail2)( e + lYP) N-2 

j~O p rN-1 N - - 2  2 

>-- Ce--~- (e + r2) N-2 

> Ce. 

It follows from the assumption of (H2) that  for any r] > 0, there exists p > 0 

small enough such that for x e Bp(ai), ]Q(x) - Q(ai)l _< ~]]x - hi] 2. So we have 

I s (Q(x) - Q(a,))lw~' 12*dx <_ /B,(~,) IQ(x) - Q(adllw~'12"dx 

N / .  I~ - a~l ~ 
,(ad 

~0 p rN + l 
~-- C~]e~ (e + r~) Ndr 

fO r ~;N+I 
,/7 

_< CT]e (1 + t2) N dt 

<_ C~]e, 

which implies 

(4.7) fn(Q( x) - Q(a~) )]w~' y dx = o(e). 
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Thus, from (4.7), we derive 

Q(x)[w~'2*dx =QM /RN 'W~[2*dx - QM /RN\~ ]wa~]2*dx 

+ QM .~([V[ 2. -- 1)lW:'12"dx 

(4.8) + _~ (Q(x) - Q(a,))lwt ~ 12. dx 

=QM ./~ IW~ + 0(~§ ) + o(~) 

=QM /I~N [W~ + o(e). 

Inserting (4.3), (4.5), (4.6) and (4.8) into (4.2), we deduce that for e > 0 small 

enough 

1 fR~, ]VWO[2dx + O(e-'~)N-2 _ Ce - L(e) -~ 

1v  

_< SjN_2 (1 + O(e - ~  ) - Ce - C L ( e ) ) ~  
NQ-~-- 

N 

< s j  
N ~ 2  " 

N Q J  
LEMMA 4.3: There exist A0, to  > 0 such that 

N 

~(~,  a) > s~ ~_~ ~o~ ~1 ~ E (0, ~0) ~nd ti ~ (0, tio). 
N Q ~  

Proof: Suppose to the contrary that  we could find two positive sequences 
N N - - 2  

An ~ 0 and ti ,  ~ 0 as n ----* c~, such that ~(An, an) -'-"-4 C ~ S ~ / N Q ~  

Consequently, there exists u,~ E (gi(A,, an) such that as n ~ c~, 

h . , . ~ ( ~ )  , c 

�9 [un[2 An}u.12)dx = faQ(x) tu .ydx .  ] (tWnl: - an 

and 

and 

(4.9) 

It then follows easily that [ u,~[ < C, and in particular, 

lira tin T ~ - a x  <_ lira - -  IVun[2dx = 0 
n ----~ OO n ----~ OQ ]~  

lim A n / a  lu~[2dx = O. 
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From (4.9), and by the HSlder and Sobolev inequalities, we can fix m0 :> 0 such 

t ha t  

[VUnl2dx ~ mo and ~ Q(x)[Un[2*dx ~ mo . 

Thus,  up to a subsequence,  we infer t ha t  

n n 

Fur thermore ,  we deduce 

(4.1o) 

2 *  

2 lim IVUu{2dx a ~ Q M  lim lUnl2.dz ~-- Q M S o  2* 
n -......~ oo n --.-~ oo 

QMS 0 a 2 . 

Therefore ,  

(4.13) 

Set w,~ = u,~/lU~lL2*(~); then  IWnlL2*(~) = 1, and 

~ /~ IVwnl2dx = lim 
{Vu, { dx 

2 

N N - - 2  

(4.11) a > S~-/Q~ 

On the o ther  hand,  we have as n - - ~  oc 

(4.12) 
1 1 {u~{ 2 -~a -~ / ({Vunl 2 Anlunl2)dx - 1 ~ Q(x)lunl2.dx + o(1 ) = -#~  - ~  

= I~,u,~ (Un) + o(1) 
N 

<So 
- -  N - - 2  " 

N N - - 2  

Hence, f rom (4.11) and (4.12), we infer a = S ~ / Q ~  , and then  f rom (4.10) 

lira QMlu~[2*dx = S~ / Q 2  

nh_m / (QM - Q(x))lu,~12*dx = O. 

-- So. 

Thus  we get 
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That  is, {wn} is a minimizing sequence for the problem 

We now use a result of P. L. Lions [12] to conclude that  there exists an xo E Q 

and a subsequence, still denoted by {w~}, such that  

and 

IVWn[ 2 ~. d~ = So5= o weakly in the sense of measure, 

tw~l 2. ~ dV = 5~ o weakly in the sense of measure. 

which implies that  x0 ~ {aii i = 1, 2 , . . . ,  k}. Therefore, from (4.13), we deduce 

1" 
QM = nli~oo J~ QM[Wn] 2"dx : nh~o~ L Q(x)lwnl2"dx-~ (~(Xo)' 

which is impossible, because that  Q is not a constant function, i 

LEMMA 4.4: For any u C Af/(A,p)(1 <__ i <_ k), there exists pu > 0 and a 

differentiable function f: Bp~(O) C H~(f]) ) ]~ such that f(O) = 1, and for 

any w E Bp~(O), we have f ( w ) ( u -  w) C Af/(/k, p). Moreover, for all v E H~(~),  

/f'(O), v) -- 
2 f ~ ( w .  V v  - , ~  - ~ v ) d x  - 2* f~ Q ( x ) l ~ i : ' - ~ a x  

f~(IWl ~ . lu l :  - Alul2)dx - (2*  - 1 )  f~ Q(x)lul2*dx - ~  

Proo~ Let u E Af/(A, #) and G: lt~ + • H01 (Q) > R be the function defined by 

a ( t , w )  = t ] - s  2.-1 Q(x ) iu -wi :*dx .  

Then G(1, 0) = 0 and 

iul2 -  i i2)dx-(2" - 1) Q(x)l 12"dx Gt(1,0) = 0Vu]2 - #~ -~  

= (2 - 2*) ~ Q(x)iul2*dx 

r  

ro = l im gi(Wn) -~- l im f~r =~bi(x0) ,  
3 n-----~oo n------woe f~ ]VWnl2dx 

Observe that  gi(wn) = gi(Un) = r0/3; we conclude that  
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Hence, by the implicit function theorem, we infer that  there exists p ,  > 0 

small enough and a differentiable function f :  Bp,,(O) C H~(~) ) l~ such that  

f (0)  = 1 and G(f (w) ,w)  = 0 for all w �9 Bp,,(O). It is easy to verify from 

G(f(w) ,  w) = 0 that  f (w)(u  - w) �9 Afi(~, #) and 

(f'(O),v) - 
<G~(1; 0), v) 

c~O,o) 

2 f n ( V u .  Vv  - / ~ - ~  - ),uv)dx - 2* fn Q(x)lul 2*-2uvdx 
= " I I  

_ _  _ _  2 *  f ~ ( l V u l  2 - ~,_~,P ~Xlul2)dx - (2* 1) fa Q(x) lu l  dx  Ixl 
Proof  of Theorem 1.3: From Lemmas 4.2 and 4.3, we conclude that  

(4.14) c i ( ) ~ , # ) < ~ ( ) ~ , # ) ( l < i < k )  for all )~ �9 (0, A0) and # e (0,#0). 

It then follows that  

c~(A,/~) - inf{Ix,.(u)l u �9 (J~(A,/~) u O~(A, t*))}. 

Let {u~,} c (Afi(A,#)U Oi()~,#)) be a minimizing sequence for ci()~,#). By 

u i i > 0. By Ekeland's replacing u ni with I hi, if necessary, we may assume that  u n 
U i variational principle [7], there exists a subsequence, still denoted by { n }, such 

that  
1 

5,.(u~) _< c~(~,.) + - ,  
n 

and 

I~,.(w) >_ I:,,.(u~) - 11 w- u~l for all w �9 (Afi(A,~)U Oi(A,/~)). 

i J~i(A,#) for sufficiently large n. Set From (4.14), we may assume that  u,~ C 

Vp = pv with I v[ = 1 and 0 < p < Pu',; then vp C Bp%(O), and from Lemma 

4.4, Wp = fu~(Vp)(Uin - %) �9 ]q'i()~,#), where P~,~,fu~ are from Lemma 4.4. 

Observe that  fu~(Vp) > fu~(1) -- 1 as p ) 0, and by a Taylor expansion, we 

obtain 

1 >_5,.(~) - 5,.(w:) 

-(dl:,,u(un),un -To)+ o(l u~ - 

=pfu~(pv)(dIx#,(Uin),V) + (1 i i - : ~  (p~)) (dS , . (u . ) ,  u . )  

w A )  + o ( t  u~ - 
i =Piu~ (pv)(dI:,,.(u~), v) + o(l u n - wp] ). 
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Hence, we conclude that  

I w .  - u~l (~ + Io(i)l) I(dS,.(u~), vii s Plfu~ (pv)l 
u~(f~ n < I (pv) - fu=(O)) - p v f u , ( p v ) l  ( !  + Io(1)1) 

- p l f ~  (pv) l 

t~ l l  f~t , (pv)  -pls (o)1 + pl vl Is (nl + Io(1)1)_ < 

_< C(1 + ]f'%(O)l ) ( 1  + io(1)1). 

Therefore, we deduce that  dI~,,(u~) , 0  as n ~ ~ .  Hence {Uin} is a Palais- 
N N - - 2  

Smale sequence for I~,~ at the level ci(A,#). Since ci(A,#) < S~/NQf f  = c* 
in Case II, from Lemma 2.1, we infer that  there is a subsequence of {u~}, still 

u i u i H~(f~), such that  denoted by { n}, and a function E 

i u i (1 < i < k) strongly in H~(f~), U n > 

and then u i _> 0(1 < i < k). By the strongly maximum principle, we obtain 

u i > 0 (1 < i < k) in ~. Since gi(u i) E B~( a d ,  and B~(~d  are disjoint for 

i = 1 , 2 , . . . , k ,  we conclude from Lemma 4.1 that  ui(1 < i _< k) are distinct 

positive solutions of (1.1). | 
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